Math 295 - Spring 2020
Solutions to Homework 10

1. (a) We verify the three axioms:
2. Nonnegativity: The maximum of a set of nonnegative numbers is nonnegative. Furthermore, the maximum of a set of nonnegative numbers is zero if and only if every number in the set is zero.
3. Symmetry: This follows from the fact that for each $i,\left|x_{i}-y_{i}\right|=\left|y_{i}-x_{i}\right|$.
4. Triangle inequality: Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right), \mathbf{z}=\left(z_{1}, \ldots, z_{n}\right) \in$ $\mathbb{R}^{n}$, and let $k$ be such that $\rho(\mathbf{x}, \mathbf{z})=\left|x_{k}-z_{k}\right|$ (the maximum value is attained since $n$ is finite). Then we have

$$
\rho(\mathbf{x}, \mathbf{z})=\left|x_{k}-z_{k}\right| \leq\left|x_{k}-y_{k}\right|+\left|y_{k}+z_{k}\right| \leq \rho(\mathbf{x}, \mathbf{y})+\rho(\mathbf{y}, \mathbf{z}),
$$

where here we have used the triangle inequality for the usual absolute value, and the fact that for each $i,\left|x_{i}-y_{i}\right| \leq \rho(\mathbf{x}, \mathbf{y})$.
(b) The topology induced by $\rho$ has as a basis the collection

$$
\mathcal{B}=\left\{B_{\rho}(\mathbf{x}, r) \mid \mathbf{x} \in \mathbb{R}^{n}, r>0\right\}
$$

and the usual topology on $\mathbb{R}^{n}$ has as a basis the collection

$$
\mathcal{B}^{\prime}=\left\{\left(a_{1}, b_{1}\right) \times \cdots \times\left(a_{n}, b_{n}\right) \mid a_{i}<b_{i} \in \mathbb{R}\right\} .
$$

We use Lemma 13.3 to show that these two bases generate the same topology.
Let $\mathbf{x} \in \mathbb{R}^{n}$ and $B=B_{\rho}(\mathbf{y}, r) \in \mathcal{B}$ be such that $\mathbf{x} \in B$. Then there is $\delta>0$ such that $B_{\rho}(\mathbf{x}, \delta) \subset B_{\rho}(\mathbf{y}, r)$. Let $B^{\prime}=\left(x_{1}-\delta, x_{1}+\delta\right) \times \cdots \times\left(x_{n}-\delta, x_{n}+\delta\right)$. Then $\mathbf{x} \in B^{\prime} \subset B_{\rho}(\mathbf{x}, \delta) \subset B$.
Now let $\mathbf{x} \in \mathbb{R}^{n}$ and $B^{\prime}=\left(a_{1}, b_{1}\right) \times \cdots \times\left(a_{n}, b_{n}\right) \in \mathcal{B}^{\prime}$ be such that $\mathbf{x} \in B^{\prime}$. Let $r=\min _{i=1}^{n}\left(x_{i}-a_{i}, b_{i}-x_{i}\right)>0$, and let $B=B_{\rho}(\mathbf{x}, r)$. Then if $\mathbf{y} \in B$, for each $i$ we have $\left|x_{i}-y_{i}\right| \leq \rho(\mathbf{x}, \mathbf{y})<r$, so $y_{i} \in\left(a_{i}, b_{i}\right)$ and $\mathbf{y} \in B^{\prime}$. Therefore $\mathbf{x} \in B \subset B^{\prime}$.
2. Let $(X, d)$ be a metric space, and let $x \neq y \in X$. Then $d(x, y)>0$ by the properties of a metric. We claim that $B_{d}\left(x, \frac{d(x, y)}{2}\right)$ and $B_{d}\left(y, \frac{d(x, y)}{2}\right)$ are disjoint, and as they are open sets containing $x$ and $y$ respectively, proving this will complete the proof.
Let $z \in B_{d}\left(x, \frac{d(x, y)}{2}\right)$. By the triangle inequality,

$$
d(z, y) \geq d(x, y)-d(x, z) \geq d(x, y)-\frac{d(x, y)}{2}=\frac{d(x, y)}{2}
$$

therefore, $z \notin B_{d}\left(y, \frac{d(x, y)}{2}\right)$, and the two balls are disjoint.
3. (a) All three properties follow from the fact that they hold for all $x_{1}, x_{2}, x_{3} \in X$, and therefore for all $a_{1}, a_{2}, a_{3} \in A$.
(b) The subspace topology on $A$ is exactly

$$
\mathcal{T}=\{U \cap A \mid U \text { is open in } X\} .
$$

We use Lemma 13.2 to show that the balls $B_{\left.d\right|_{A \times A}}(a, r)$ for $a \in A$ and $r>0$ form a basis for this topology.
First, we note that

$$
B_{\left.d\right|_{A \times A}}(a, r)=B_{d}(a, r) \cap A,
$$

and therefore each $B_{\left.d\right|_{A \times A}}(a, r) \in \mathcal{T}$.
Now it remains to show that for every $a \in A$ and $V \in \mathcal{T}$, there are $b \in A$ and $r>0$ such that $a \in B_{\left.d\right|_{A \times A}}(b, r) \subset V$. Since $V \in \mathcal{T}$, there is $U$ open in $X$ such that $V=U \cap A$. Now by the characterization of opens in a metric space, there is $\delta>0$ such that $B_{d}(a, \delta) \subset U$. Now we have that $B_{\left.d\right|_{A \times A}}(a, \delta)=B_{d}(a, \delta) \cap A$, so $a \in B_{\left.d\right|_{A \times A}}(a, \delta) \subset V$. This is exactly what we need to apply Lemma 13.2 , and so the balls in the restricted metric are indeed a basis for the subspace topology on $A$.

