Math 295 - Spring 2020 Homework 10

This homework is due on Wednesday, March 25. Most problems are adapted from Munkres's *Topology*.

1. Consider the square metric

 $\rho(\mathbf{x}, \mathbf{y}) = \max(|x_1 - y_1|, \dots, |x_n - y_n|),$

for $\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_n) \in \mathbb{R}^n$.

- (a) Show that ρ is a metric on \mathbb{R}^n .
- (b) Show that ρ induces the standard topology on \mathbb{R}^n .
- 2. Show that every metric space is Hausdorff.
- 3. Let X be a metric space with metric d, and A be a subspace of X.
 - (a) Show that $d|_{A \times A}$ is a metric on A.
 - (b) Show that $d|_{A \times A}$ induces the subspace topology on A.

No extra problem for graduate credit this week.