Math 295 - Spring 2020 Homework 1

This homework is due on Friday, January 17. All problems are adapted from Munkres's *Topology*.

- 1. Write the contrapositive and converse of the statement: "If x < 0, then $x^2 x > 0$."
- 2. Let A and B be sets of real numbers. Write the negation of the following two statements:
 - (a) For every $a \in A$, it is true that $a^2 \in B$.
 - (b) For at least one $a \in A$, it is true that $a^2 \in B$.
- 3. Let \mathcal{A} be a nonempty collection of sets. Determine the truth of each of the following statements and of their converses:
 - (a) $x \in \bigcup_{A \in \mathcal{A}} A \implies x \in A$ for at least one $A \in \mathcal{A}$
 - (b) $x \in \bigcup_{A \in \mathcal{A}} A \implies x \in A$ for every $A \in \mathcal{A}$
 - (c) $x \in \bigcap_{A \in \mathcal{A}} A \implies x \in A$ for at least one $A \in \mathcal{A}$
 - (d) $x \in \bigcap_{A \in \mathcal{A}} A \implies x \in A$ for every $A \in \mathcal{A}$
- 4. Let $f: A \to B$, $A_0 \subset A$, and $B_0 \subset B$.
 - (a) Show that $A_0 \subset f^{-1}(f(A_0))$ and that equality holds if f is injective.
 - (b) Show that $f(f^{-1}(B_0)) \subset B_0$ and that equality holds if f is surjective.
- 5. Consider the following relation $<_N$ on \mathbb{R} :

$$x <_N y$$
 if $x^2 < y^2$ or if $x^2 = y^2$ and $x < y$,

where < is the usual order relation on \mathbb{R} . Show that $<_N$ is an order relation.