Math 295 - Spring 2020
Homework 1
This homework is due on Friday, January 17. All problems are adapted from Munkres's Topology.

1. Write the contrapositive and converse of the statement: "If $x<0$, then $x^{2}-x>0$."
2. Let $A$ and $B$ be sets of real numbers. Write the negation of the following two statements:
(a) For every $a \in A$, it is true that $a^{2} \in B$.
(b) For at least one $a \in A$, it is true that $a^{2} \in B$.
3. Let $\mathcal{A}$ be a nonempty collection of sets. Determine the truth of each of the following statements and of their converses:
(a) $x \in \cup_{A \in \mathcal{A}} A \Longrightarrow x \in A$ for at least one $A \in \mathcal{A}$
(b) $x \in \cup_{A \in \mathcal{A}} A \Longrightarrow x \in A$ for every $A \in \mathcal{A}$
(c) $x \in \cap_{A \in \mathcal{A}} A \Longrightarrow x \in A$ for at least one $A \in \mathcal{A}$
(d) $x \in \cap_{A \in \mathcal{A}} A \Longrightarrow x \in A$ for every $A \in \mathcal{A}$
4. Let $f: A \rightarrow B, A_{0} \subset A$, and $B_{0} \subset B$.
(a) Show that $A_{0} \subset f^{-1}\left(f\left(A_{0}\right)\right)$ and that equality holds if $f$ is injective.
(b) Show that $f\left(f^{-1}\left(B_{0}\right)\right) \subset B_{0}$ and that equality holds if $f$ is surjective.
5. Consider the following relation $<_{N}$ on $\mathbb{R}$ :

$$
x<_{N} y \quad \text { if } x^{2}<y^{2} \text { or if } x^{2}=y^{2} \text { and } x<y
$$

where $<$ is the usual order relation on $\mathbb{R}$. Show that $<_{N}$ is an order relation.

