
Math 295 - Spring 2020
Solutions to Final Review Homework

Book problems:

§13 # 1 For x ∈ A, we have that there is a set Ux, open in X, such that x ∈ Ux ⊂ A. We
claim that A =

⋃
x∈A Ux.

Indeed, we have that A ⊂
⋃
x∈A Ux: If x ∈ A, then there exists Ux such that x ∈ Ux,

and so x ∈
⋃
x∈A Ux. Conversely,

⋃
x∈A Ux ⊂ A. Indeed, let y ∈

⋃
x∈A Ux. Then there

is x ∈ A such that y ∈ Ux, but Ux ⊂ A, and therefore y ∈ A.

Now since each Ux is open in X, A is a union of open sets which by definition of a
topology is open in X.

§13 # 3 We show the three axioms for Tc:

• We have that ∅ ∈ Tc because X − ∅ = X, and X ∈ Tc because X − X = ∅,
which is countable (see the Definition of countable on page 45 of the book, and
the Definition of finite on page 39; they imply that ∅ is a countable set).

• Let Uα ∈ Tc for α ∈ J , where J is an arbitrary indexing set. Now let U =
⋃
α∈J Uα;

we wish to show that U ∈ Tc. This is done by computing X − U and showing
that it is countable.

X − U = X −
⋃
α∈J

Uα =
⋂
α∈J

(X − Uα),

where the last equality follows by de Morgan’s law. Now we have that
⋂
α∈J(X −

Uα) ⊂ X − Uα for each α, but since Uα ∈ Tc, X − Uα is countable. Therefore
X−U is a subset of a countable set, and by Corollary 7.3, X−U is thus countable.
Therefore U ∈ Tc.
• Let U1, . . . , Un ∈ Tc. Now let U =

⋂n
i=1 Ui; we wish to show that U ∈ Tc. Once

again, this is done by computing X − U and showing that it is countable.

X − U = X −
n⋂
i=1

Ui =
n⋃
i=1

(X − Ui),

and again the last equality follows by de Morgan’s law. Since each Ui ∈ Tc,
X−Ui is countable. Therefore X−U is a finite union of countable sets, and thus
countable by Theorem 7.5. Therefore U ∈ Tc.

Since Tc satisfies the three axioms defining a topology, it is a topology.

However, the collection T∞ is not a topology. This is because unions of elements of
T∞ do not always belong to Tc. This, in turn, follows from the fact that a subset of an
infinite set is not necessarily infinite, empty, or all of X. As a specific counterexample,



consider X = Z, U1 = {n ∈ Z | n is even but n 6= 0} and U2 = {n ∈ Z | n is odd}.
Then both U1 and U2 belong to T∞ since Z−U1 and Z−U2 are both infinite. However,
if U = U1 ∪ U2, then

X − U = X − (U1 ∪ U2) = {0},

with is not infinite, empty or all of Z. Therefore U does not belong to T∞.

§16 # 3 Before we begin, we note that the open intervals (a, b) form a basis of open sets
for the topology on R. This follows from the definition of the order topology (which
is the “usual” topology on R) given on page 84 of the book. As a consequence, sets of
the form (a, b) ∩ Y form a basis of open sets for the topology on Y , by Lemma 16.1.
We will use these facts in the following way when necessary: By the definition of a
topology generated by a basis, which is given on page 78 of the book, U is open if for
each x ∈ U , there if B ∈ B such that x ∈ B ⊂ U .

• A = (−1,−1
2
) ∪ (1

2
, 1). In R, this is a union of two basis elements, and therefore

open in R. Furthermore we have that A = Y ∩A, and therefore A is also open
in Y by definition of the subspace topology, which is given on page 88 of the
book.

• B = [−1,−1
2
) ∪ (1

2
, 1]. We have that there is no interval (a, b) such that 1 ∈

(a, b) ⊂ B, and therefore B is not open in R. However, we have that B =
Y ∩ ((−3

2
,−1

2
) ∪ (1

2
, 3
2
)), and (−3

2
,−1

2
) ∪ (1

2
, 3
2
) is open in R since it is a union of

two basis elements, so its intersection with Y is open in Y .

• C = (−1,−1
2
] ∪ [1

2
, 1). We have that there is no interval (a, b) such that 1

2
∈

(a, b) ⊂ C, and therefore C is not open in R. The same can be said about Y :
There is no basis element (a, b) ∩ Y such that 1

2
∈ (a, b) ∩ Y ⊂ C, so C is not

open in Y .

• D = [−1,−1
2
] ∪ [1

2
, 1]. The exact same argument we used for set C shows that D

is not open in R and not open in Y .

• E = (−1, 0) ∪ (0, 1) − { 1
n
| n ∈ Z+}. For x ∈ (−1, 0), since (−1, 0) is a basis

element, we have that x ∈ (−1, 0) ⊂ E. If x ∈ (0, 1)∩E, then there exists n ∈ Z+

such that 1
n+1

< x < 1
n
, and x ∈ ( 1

n+1
, 1
n
) ⊂ E. Therefore in either case the basis

condition is satisfied, and E is open in R. The same argument applies to Y : For
x ∈ (−1, 0), since (−1, 0)∩Y is a basis element, we have that x ∈ (−1, 0)∩Y ⊂ E.
If x ∈ (0, 1) ∩ E with 1

n+1
< x < 1

n
, then x ∈ ( 1

n+1
, 1
n
) ∩ Y ⊂ E. Again in either

case the basis condition is satisfied and E is open in Y .

§17 # 7 First, to be clear, the fact “
⋃
Aα ⊂

⋃
Aα” is false in general. One can see this

by choosing An = { 1
n
}; then An = An, but

⋃
An =

⋃
An ∪ {0}.

The problem with the “proof” is the following: Though every neighborhood U of x
intersect some Aα, the particular Aα can depend on which U we begin with. In other



words, the argument doesn’t give us one fixed Aα such that U∩Aα is always nonempty.
Therefore we cannot conclude that x belongs to the closure of any one set Aα.

We can see this in our example: There is no fixed n ∈ Z+ such that every neighborhood
of 0 contains 1

n
, but if we allow n to vary, then each neighborhood of 0 contains some

1
n
.

§18 # 3 (a) We have that i is continuous if and only if for every U ∈ T (i.e. U is open in
X), i−1(U) ∈ T ′ (i.e. i−1(U) is open in X ′). Since i is the identity function, we
have that i−1(U) = U , so i is continuous if and only if for every U ∈ T , U ∈ T ′.
But this last fact is true if and only if T ⊂ T ′, which is the definition of “T ′ is
finer than T .”

(b) i is a homeomorphism if and only if i is bijective, i is continuous, and i−1 is
continuous. The identity function is bijective, and we have already seen in part
(a) that if T ⊂ T ′, then i is continuous. To show that i−1 is also continuous, we
apply part (a) to i−1, which is the identity function as well, but going from X to
X ′ (in symbols, i−1 : X → X ′ is also the identity function). We get that i−1 is
continuous since T ′ ⊂ T , and we are done.

§21 # 12(a) The proof of the fact that +: R× R → R is continuous relies on using The-
orem 21.1, and choosing the metric on R×R inducing the usual topology judiciously.
Indeed, many metrics induce the usual topology on R×R, but most of them are very
complicated and hard to work with. The easiest is usually the square metric, given by

dR×R(x0 × y0, x× y) = max(|x0 − x|, |y0 − y|).

We have show in Homework 10, problem 1, that this metric indeed induces the usual
(or standard) topology on R×R. (For R we will use the usual metric d(z0, z) = |z0−z|.)
Now with these choices of metrics, and applying this to the addition function

+: R× R→ R
x× y 7→ x+ y,

Theorem 21.1 says that + is continuous if and only if for any x0× y0 ∈ R×R and any
ε > 0, there is δ > 0 such that

max(|x0 − x|, |y0 − y|) < δ =⇒ |(x0 + y0)− (x+ y)| < ε.

Indeed, fix x0 × y0 ∈ R× R and ε > 0, and let δ = ε
2
. Notice that

max(|x0 − x|, |y0 − y|) <
ε

2



implies that |x0 − x| < ε
2

and |y0 − y| < ε
2
. Therefore if max(|x0 − x|, |y0 − y|) < ε

2
, we

have

|(x0 + y0)− (x+ y)| = |(x0 − x) + (y0 − y)|
≤ |x0 − x|+ |y0 − y|

<
ε

2
+
ε

2
= ε.

This is what we needed to show, and + is continuous.

More problems:

1. • ∅ is closed since X −∅ = X is open, and X is closed since X −X = ∅ is open.

• Let A1, A2, . . . , An all be closed, so that Ui = X − Ai is open for i = 1, . . . , n.
Note that Ai = X − Ui as well. Then we have

n⋃
i=1

Ai =
n⋃
i=1

(X − Ui) = X −
n⋂
i=1

Ui,

by de Morgan’s law. Since a finite intersection of open sets is open,
⋂n
i=1 Ui is

open, and so
⋃n
i=1Ai is closed.

• Let Aα be closed for α ∈ J . Therefore there are Uα for each α ∈ J such that Uα
is open and Aα = X − Uα. Then we have⋂

α∈J

Aα =
⋂
α∈J

(X − Uα) = X −
⋃
α∈J

Uα,

again by de Morgan’s law. Since an arbitrary union of open sets is open,
⋃
α∈J Uα

is open, and so
⋂
α∈J Aα is closed.

2. For this problem we will use the definition of the closure (instead of Theorem 17.5): A
is the intersection of all the closed sets C in X such that A ⊂ C:

A =
⋂

C closed
A⊂C

C.

We also note the following: In the discrete topology, every set is open, and therefore
every set is closed. In the trivial topology, the only open sets are {∅, X} and therefore
those are also the only closed sets. Finally, in the finite complement topology, the open
sets are those with finite complement, or whose complement is all of X, and therefore
the closed sets are exactly the finite sets, and X.

(a) A = {1, 2, 3}. In the discrete topology A is closed and therefore A = A. In the
trivial topology, the only closed set containing A is R, and therefore A = R. In
the finite complement topology A is closed and therefore A = A.



(b) A = { 1
n
| n ∈ Z+}: In the discrete topology, again A is closed and therefore

A = A. In the trivial topology, once again the only closed set containing A is
R, and therefore A = R. In the finite complement topology, the only closed set
containing A is R. (Indeed, A is not contained in any finite set, and the only
remaining closed set is R.) Therefore A = R.

3. Note that

|x| =

{
x if x ≥ 0;

−x if x ≤ 0.

We have that the identity function from [0,∞) to [0,∞) is continuous. In addition,
the function from (−∞, 0] to [0,∞) sending x to −x is also continuous, because

|x− y| < ε =⇒ |(−x)− (−y)| = |y − x| < ε.

(Here we are using Theorem 21.1 with the metric d(x, y) = |x − y| on [0,∞) and
(−∞, 0].) Therefore by the Pasting Lemma (Theorem 18.3), because [0,∞) and
(−∞, 0] are closed and the functions agree at x = 0, |x| is continuous.

4. This is the characterization of open sets for metric spaces! Let x ∈ U , with U open. By
the definition of the topology induced by a basis, and by the definition of the topology
induced by a metric, there are y ∈ X and δ > 0 such that

x ∈ Bd(y, δ) ⊂ U.

Let ε = δ − d(x, y), and let z ∈ Bd(x, ε). We then have

d(y, z) ≤ d(y, x) + d(x, z) < d(x, y) + ε = d(x, y) + δ − d(x, y) = δ,

and therefore z ∈ Bd(y, δ). It follows that Bd(x, ε) ⊂ Bd(y, δ) ⊂ U .

5. We apply Theorem 21.1: For x ∈ X and ε > 0, we have that

dX(x, y) < ε =⇒ dY (f(x), f(y)) = dX(x, y) < ε.

6. (a) X1 is not Hausdorff: There is no open set that contains x1 but not x2 (let alone
disjoint open sets containing each). X1 is connected: The only open set containing
x3 is X, and therefore X cannot be written as the union of two disjoint nonempty
open sets. X1 is compact: It only has finitely many open sets, and therefore any
open cover must be finite.

(b) i is not continuous, because {x1} is open in X2, but i−1({x1}) = {x1} is not open
in X1. i

−1, however, is continuous. This is equivalent to saying that i sends open
sets to open sets since here (i−1)−1(U) = i(U) (or in other words, saying that i is
open). Here the image of every open set is open, since every set that is open in
X1 is open in X2.



(c) Here once again we will use the definition of the closure (instead of Theorem 17.5):
A is the intersection of all the closed sets C in X such that A ⊂ C:

A =
⋂

C closed
A⊂C

C.

For our convenience, we list the closed sets in X1: ∅, {x3}, {x1, x3}, and X.

We thus have that:

{x1} = {x1, x3} ∩X = {x1, x3},
{x2} = X,

{x3} = {x3} ∩ {x1, x3} ∩X = {x3}.

7. (a) If X is Hausdorff under T , then it is Hausdorff under T ′. Indeed, if, given any
x 6= y we can find U, V disjoint open in T with x ∈ U and y ∈ V , then these
same sets also belong to T ′ and therefore the Hausdorff condition is still satisfied.
However, if X is Hausdorff under T ′, then it may or may not be Hausdorff under
T . T has fewer open sets than T ′, and so we cannot be sure if it still has enough
open sets to be able to separate every point with two disjoint open sets or not.

(b) If X is connected under T ′, then it is connected under T . Indeed, if there is no
separation of X with sets open in T ′, then there can be no separation of X with
sets open in T , since T has fewer open sets than T ′. If X is connected under T ,
then it may or may not be connected under T ′. T ′ has more open sets than T ,
so maybe now there is a separation of X, but maybe not.

(c) If X is compact in the T ′ topology, then X is compact in the T topology. If all
of the covers by sets that are open in T ′ have a finite subcover, then so do all of
the covers by sets that are open in T , since T has fewer open sets than T ′. If X
is compact under T , then it may or may not be compact under T ′. T ′ has more
open sets than T , so maybe now there is a cover of X with no finite subcover,
but maybe not.

8. (a) Let W ⊂ X ×Y be open. Then we have that there is an indexing set J such that

W =
⋃
α∈J

Uα × Vα,

and for each α ∈ J , ∅ 6= Uα ⊂ X is open, and ∅ 6= Vα ⊂ Y is open. Then we
claim that πX(W ) =

⋃
α∈J Uα. Indeed, if x ∈

⋃
α∈J Uα, then x ∈ Uα for some α,

and so there is y ∈ Vα such that x× y ∈ Uα× Vα ⊂ W . For the reverse inclusion,
let x ∈ πX(W ). Then there is y ∈ Y such that x× y ∈ W , and therefore α such
that x× y ∈ Uα×Vα ⊂. Then x ∈ Uα ⊂

⋃
α∈J Uα. But πX(W ) =

⋃
α∈J Uα is then

open, since it is a union of open sets. Therefore πX maps open sets to open sets.



(b) Let C ⊂ X × Y be closed. We wish to show that πX(C) is closed by showing
that X − πX(C) is open. Let x0 ∈ X − πX(C). Since x0 6∈ πX(C), then for all
y ∈ Y , x0 × y 6∈ C. But C is closed, and therefore X × Y −C is open, and so by
definition of a basis for a topology, there are Uy ⊂ X and Vy ⊂ Y open such that
x0 × y ∈ Uy × Vy ⊂ X × Y − C. The open sets Vy cover Y , which is compact,
and therefore there is a finite subcover {Vy1 , Vy2 , . . . , Vyn}. Then we have that
x ∈ U =

⋂n
i=1 Uyi , and U is open since it is a finite intersection of open sets. We

claim that U ⊂ X−πX(C). Indeed, if x ∈ U , then x ∈ Uyi for each i. Suppose for
a contradiction that x ∈ πX(C), then there is y such that x× y ∈ C. But y ∈ Vyi
for some i since the Vyis cover Y , so x × y ∈ Uyi × Vyi , but that open set was
supposed to be disjoint from C, contradiction. Therefore every x0 ∈ X − πX(C)
is contained in an open set U with x0 ∈ U ⊂ X − πX(C), and X − πX(C) is open
by §13 # 1. Therefore πX(C) is closed and we are done.

(c) Note that for any set S ⊂ X, since f is a bijection, (f−1)−1(S) = f(S).

Therefore f−1 is continuous if and only if U ⊂ X open implies that (f−1)−1(U) =
f(U) is open, and this is the definition of f being open. In the same way, f−1 is
continuous if and only if A ⊂ X closed implies that (f−1)−1(A) = f(A) is closed,
and this is the definition of f being closed.

(d) This problem is actually pretty hard. It’s much easier to give a map which is
closed but not open. For example f : R→ R a constant map is closed: The image
of every set is a closed set which is not open, and therefore closed sets go to a
closed set, but open sets do not map to a closed set.

Nevertheless, we persist with the example required: Let π1 : R×R→ R be given
by π1(x×y) = x, the projection map. Then π1 is open by part (a) of this problem.
However, π1 is not closed. Consider the set

C = {x× y | xy = 1}.

Grant for now that C is closed (we will show this below). Then π1(C) = (−∞, 0)∪
(0,∞). The complement of π1(C) is thus the set {0}, which is not open in C, and
therefore π1(C) is not closed.

To show that C is closed, we will need that the multiplication map · : R×R→ R
sending x× y to their product x · y is continuous. We can show this by applying
Theorem 21.1, using the same set-up we used for §21 # 12(a) above: Let x0×y0 ∈
R× R and ε > 0. Let M = max(|x0|, |y0|+ 1

2
) and δ = min( ε

2M
, 1
2
). Then if

max(|x0 − x|, |y0 − y|) < δ,



it follows that

|x0y0 − xy| = |x0y0 − x0y + x0y − xy|
= |x0(y0 − y) + y(x0 − x)|
≤ |x0||y0 − y|+ |y||x0 − x|

< Mδ + (|y0|+
1

2
)δ

≤M · ε

2M
+M · ε

2M
= ε.

Then C is closed because it is the inverse image of the closed set {1} under the
continuous map given by multiplication.

9. (a) Note that both ∅ and Y are compact in Y . (Since Y is finite, every subset of Y
is compact in every topology.) Suppose that X is compact. Then f−1(∅) = ∅ is
compact, and f−1(Y ) = X is compact, and therefore f is proper. Conversely, if
f is proper, then since Y is compact, f−1(Y ) = X is compact.

(b) Let C ⊂ X be closed. Then since X is compact, C is compact. The image of
a compact set by a continuous map is compact, and therefore f(C) is compact.
Because Y is Hausdorff, f(C) is closed. Therefore f is closed.

Now let A ⊂ Y be compact. Since Y is Hausdorff, A is closed, and since f
is continuous, f−1(A) is closed. But since X is compact, f−1(A) is compact.
Therefore f is proper.

10. The Intermediate Value Theorem says:

Let f : X → Y be a continuous map, where X is connected and Y is a simply-ordered
set with the order topology. If a and b are two points of X and r is a point of Y lying
between f(a) and f(b), then there exists a point c of X such that f(c) = r.

The Theorem does not hold if f is not continuous. For example, let f : R → R be
given by

f(x) =

{
1 if x ≥ 0,

−1 if x < 0.

Then we have that f(−2) = −1 < 0 < 1 = f(2) (so r = 0) but there is no c ∈ R with
f(c) = 0.

The Theorem also does not hold if X is not connected. For example, let f : (0, 1) ∪
(1, 2)→ R be given by f(x) = x. Then we have f(1/2) = 1/2 < 1 < 3/2 = f(3/2) (so
r = 1) but there is no c ∈ R with f(c) = 1.

(The Theorem also wouldn’t hold if Y Is not ordered; in this case it just doesn’t make
sense to talk about r being between f(a) and f(b) since there is no order relation, so
the Theorem is vacuously void of meaning.)


