Math 295 - Spring 2020 Final Review Homework

This homework is not for credit, please do not turn it in.

Book problems: Section 13 (page 83): # 1, 3 Section 16 (page 92): # 3 Section 17 (page 101): # 7 Section 18 (page 111): # 3 Section 21 (page 135): # 12(a)

More problems:

- 1. As in our textbook, define a set A to be *closed* in a topological space X if its complement U = X A is open in X. Prove that
 - \varnothing and X are closed sets;
 - if A_1, A_2, \ldots, A_n are all closed, then $\bigcup_{i=1}^n A_i$ is closed;
 - if $\{A_{\alpha}\}_{\alpha \in J}$ are all closed, then $\bigcap_{\alpha \in J} A_{\alpha}$ is closed.
- 2. Let $X_1 = \mathbb{R}$ with the discrete topology, $X_2 = \mathbb{R}$ with the trivial topology, and $X_3 = \mathbb{R}$ with the finite complement topology. For both sets A below, compute \overline{A} in X_1 , in X_2 , and in X_3 .
 - (a) $A = \{1, 2, 3\}$
 - (b) $A = \{ \frac{1}{n} \mid n \in \mathbb{Z}_+ \}$
- 3. Prove that the absolute value function $|\cdot| \colon \mathbb{R} \to \mathbb{R}$ sending x to its absolute value |x| is continuous.
- 4. Let (X, d) be a metric space, and $U \subset X$ be an open set. Prove that for all $x \in U$, there is $\epsilon > 0$ such that $B_d(x, \epsilon) \subset U$.
- 5. Let (X, d_X) and (Y, d_Y) be metric spaces, and let $f: X \to Y$ be a function such that

$$d_X(x_1, x_2) = d_Y(f(x_1), f(x_2)).$$

Show that f is continuous.

6. Let $X = \{x_1, x_2, x_3\}$ be a set, and consider the following two topologies on X:

We will write X_1 for the topological space (X, \mathcal{T}_1) and X_2 for the topological space (X, \mathcal{T}) .

- (a) Is X_1 Hausdorff? Is it connected? Is it compact? Justify each with one sentence.
- (b) Is the identity map $i: X_1 \to X_2$ continuous? Is i^{-1} continuous?
- (c) What are $\overline{\{x_1\}}, \overline{\{x_2\}}, \overline{\{x_3\}}$ in X_1 ?
- 7. Throughout, let X be a set, and let \mathcal{T} and \mathcal{T}' be two topologies on X.
 - (a) Suppose that $\mathcal{T}' \supset \mathcal{T}$. What does X being Hausdorff in one topology imply about X being Hausdorff in the other topology?
 - (b) Suppose that $\mathcal{T}' \supset \mathcal{T}$. What does X being connected in one topology imply about X being connected in the other topology?
 - (c) Suppose that $\mathcal{T}' \supset \mathcal{T}$. What does X being compact in one topology imply about X being compact in the other topology?
- 8. Let X and Y be topological spaces. We say that $f: X \to Y$ is an open map if whenever $U \subset X$ is open, then $f(U) \subset Y$ is open. Similarly, we say that $f: X \to Y$ is a closed map if whenever $A \subset X$ is closed, then $f(A) \subset Y$ is closed.
 - (a) Show that the projection map $\pi_X \colon X \times Y \to X$ is an open map when $X \times Y$ is given the product topology.
 - (b) Show that if Y is compact, the projection map $\pi_X \colon X \times Y \to X$ is a closed map when $X \times Y$ is given the product topology.
 - (c) Suppose that $f: X \to Y$ is a bijection. Show that f^{-1} is continuous if and only if f is open. Show that f^{-1} is continuous if and only if f is closed.
 - (d) Give an example of a map $f: X \to Y$ which is open but not closed.
- 9. Let X and Y be topological spaces. We say that $f: X \to Y$ is *proper* if whenever $A \subset Y$ is compact, then $f^{-1}(A) \subset X$ is compact.
 - (a) Let $Y = \{y\}$ be a topological space with the discrete topology. (In other words, $\mathcal{T}_Y = \{\emptyset, Y\}$.) Show that X is compact if and only if the map $f: X \to Y$ is proper.

- (b) Show that every continuous map $f: X \to Y$, where X is compact and Y is Hausdorff is proper and closed. (Note that f might not be a bijection here, so f is not a homeomorphism!)
- 10. State the Intermediate Value Theorem and give an example where a hypothesis of the Intermediate Value Theorem is relaxed and the conclusion does not hold.