Math 259 - Spring 2019 Homework 6

This homework is due on Monday, April 22.

1. Consider the multivariate quadratic map

$$F: \mathbb{F}_2^4 \to \mathbb{F}_2^3$$
$$x \mapsto (f_1(x), f_2(x), f_3(x))$$

given by the quadratic polynomials

$$f_1(x_1, x_2, x_3, x_4) = x_1x_2 + x_2x_3 + x_1 + x_4,$$

$$f_2(x_1, x_2, x_3, x_4) = x_2x_4 + x_3x_4 + x_1 + x_2 + x_3,$$

$$f_3(x_1, x_2, x_3, x_4) = x_1x_3 + x_2x_3 + x_3x_4 + 1.$$

By brute force or whatever other technique you want, for each of the following y, give x such that F(x) = y.

(a) y = (0, 1, 0)(b) y = (1, 1, 0)

2. Let

$$F: \mathbb{F}_2^4 \to \mathbb{F}_2^3$$
$$x \mapsto (f_1(x), f_2(x), f_3(x))$$

be a public key given by the quadratic polynomials

$$f_1(x_1, x_2, x_3, x_4) = x_1x_2 + x_2x_3 + x_1 + x_4,$$

$$f_2(x_1, x_2, x_3, x_4) = x_2x_4 + x_3x_4 + x_1 + x_2 + x_3,$$

$$f_3(x_1, x_2, x_3, x_4) = x_1x_3 + x_2x_3 + x_3x_4 + 1.$$

(This is the same F as in Problem 1.) For each of the following message digests y below, determine if the value x given is a valid signature for the digest or not.

- (a) y = (1, 1, 1), x = (1, 1, 0, 1)(b) y = (0, 0, 1), x = (0, 1, 0, 1)
- 3. In the following multivariate quadratic polynomial, the variables x_1, x_2, x_3 are "oil" variables, and x_4 and x_5 are "vinegar" variables:

$$P \colon \mathbb{F}_2^5 \to \mathbb{F}_2^3$$
$$x \mapsto (p_1(x), p_2(x), p_3(x)),$$

where

$$p_1(x_1, x_2, x_3, x_4, x_5) = x_1x_4 + x_2x_4 + x_2x_5 + x_4x_5 + x_2 + x_5,$$

$$p_2(x_1, x_2, x_3, x_4, x_5) = x_1x_5 + x_2x_5 + x_3x_4 + x_3 + x_5 + 1,$$

$$p_3(x_1, x_2, x_3, x_4, x_5) = x_3x_4 + x_3x_5 + x_2 + x_4.$$

Use this knowledge to solve the systems of multivariate quadratic equations below:

- (a) P(x) = (0, 0, 0)
- (b) P(x) = (1, 1, 0)
- 4. (a) There is a unique *monic irreducible* polynomial $f \in \mathbb{F}_2[x]$ of degree 2. What is f?
 - (b) Let β be a root of f, where f is as in part (a). Then $\mathbb{F}_4 = \mathbb{F}_2[\beta]$. Write a multiplication table for $\mathbb{F}_2[\beta]$.
- 5. We will now work over \mathbb{F}_3 , the field with three elements. There are three monic irreducible polynomials of degree 2 over \mathbb{F}_3 :

$$f_1(x) = x^2 + 1$$
, $f_2(x) = x^2 + x + 2$, $f_3(x) = x^2 + 2x + 2$.

- (a) Let β be a root of f_1 . Then $\mathbb{F}_9 = \mathbb{F}_3[\beta]$. Compute the following quantities in $\mathbb{F}_3[\beta]$. To obtain credit, your answer must be in the form $a_0 + a_1\beta$, with $a_0, a_1 \in \mathbb{F}_3$.
 - i. $\beta(2\beta+1)$
 - ii. β^{-1} (the multiplicative inverse of β , which is the unique $a_0 + a_1\beta$ such that $\beta(a_0 + a_1\beta) = 1$)
 - iii. $(\beta + 2)^{-1}$
- (b) Now let γ be a root of f_2 . Then $\mathbb{F}_9 = \mathbb{F}_3[\gamma]$, so it must be the case that somehow $\mathbb{F}_3[\beta] = \mathbb{F}_3[\gamma]!$ What this means is that there is a map $\phi \colon \mathbb{F}_3[\beta] \to \mathbb{F}_3[\gamma]$ that is a *field isomorphism* (a bijection respecting addition and multiplication). It is a fact that to specify ϕ , it suffices to say what $\phi(\beta)$ is (then $\phi(a_0 + a_1\beta) = a_0 + a_1\phi(\beta)$, which tells you the image of everything in $\mathbb{F}_3[\beta]$). It is another fact that $\phi(\beta)$ must be some element $a_0 + a_1\gamma$ such that

$$(a_0 + a_1\gamma)^2 + 1 = 0.$$

(In other words, $\phi(\beta)$ must be a root of f_1 !) Find $a_0 + a_1\gamma$ such that $(a_0 + a_1\gamma)^2 + 1 = 0$.

- (c) Let δ be a root of f_3 . Find $a_0 + a_1 \delta$ such that $(a_0 + a_1 \delta)^2 + 1 = 0$.
- 6. For each of the HFE polynomials $G \in \mathbb{F}_{p^r}[X]$ below, give the associated multivariate quadratic polynomial $G: (\mathbb{F}_p)^r \to (\mathbb{F}_p)^r$. In each case, use the field structure given.

(a)
$$G(X) \in \mathbb{F}_9[X], G(X) = X^{10} + 2X^3 + 1, \mathbb{F}_9 = \mathbb{F}_3[\beta], \beta \text{ a root of } f(x) = x^2 + 1$$

(b) $G(X) \in \mathbb{F}_4[X], G(X) = X^9 + X^5 + X^4 + 1, \mathbb{F}_4 = \mathbb{F}_2[\beta], \beta \text{ a root of } f(x) = x^2 + x + 1$ (c) $G(X) \in \mathbb{F}_8[X], G(X) = X^9 + X^5 + X^4 + 1, \mathbb{F}_8 = \mathbb{F}_2[\beta], \beta \text{ a root of } f(x) = x^3 + x + 1$

Extra problem for graduate credit:

1. We haven't talked about how to find the roots of a polynomial $G(X) \in \mathbb{F}_q[X]$. One way to do it is the so-called Berlekamp algorithm, which relies on the computation of $gcd(G(X), X^q - X)$. Explain why the roots of $gcd(G(X), X^q - X)$ are exactly the roots of G that are in \mathbb{F}_q .