Math 259 - Spring 2019
Homework 6
This homework is due on Monday, April 22.

1. Consider the multivariate quadratic map

$$
\begin{aligned}
F: \mathbb{F}_{2}^{4} & \rightarrow \mathbb{F}_{2}^{3} \\
x & \mapsto\left(f_{1}(x), f_{2}(x), f_{3}(x)\right)
\end{aligned}
$$

given by the quadratic polynomials

$$
\begin{gathered}
f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2}+x_{2} x_{3}+x_{1}+x_{4} \\
f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{2} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{3} \\
f_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{3}+x_{2} x_{3}+x_{3} x_{4}+1
\end{gathered}
$$

By brute force or whatever other technique you want, for each of the following y, give x such that $F(x)=y$.
(a) $y=(0,1,0)$
(b) $y=(1,1,0)$
2. Let

$$
\begin{aligned}
F: \mathbb{F}_{2}^{4} & \rightarrow \mathbb{F}_{2}^{3} \\
x & \mapsto\left(f_{1}(x), f_{2}(x), f_{3}(x)\right)
\end{aligned}
$$

be a public key given by the quadratic polynomials

$$
\begin{gathered}
f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2}+x_{2} x_{3}+x_{1}+x_{4} \\
f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{2} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{3} \\
f_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{3}+x_{2} x_{3}+x_{3} x_{4}+1
\end{gathered}
$$

(This is the same F as in Problem 1.) For each of the following message digests y below, determine if the value x given is a valid signature for the digest or not.
(a) $y=(1,1,1), x=(1,1,0,1)$
(b) $y=(0,0,1), x=(0,1,0,1)$
3. In the following multivariate quadratic polynomial, the variables x_{1}, x_{2}, x_{3} are "oil" variables, and x_{4} and x_{5} are "vinegar" variables:

$$
\begin{aligned}
P: \mathbb{F}_{2}^{5} & \rightarrow \mathbb{F}_{2}^{3} \\
x & \mapsto\left(p_{1}(x), p_{2}(x), p_{3}(x)\right),
\end{aligned}
$$

where

$$
\begin{gathered}
p_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=x_{1} x_{4}+x_{2} x_{4}+x_{2} x_{5}+x_{4} x_{5}+x_{2}+x_{5}, \\
p_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=x_{1} x_{5}+x_{2} x_{5}+x_{3} x_{4}+x_{3}+x_{5}+1, \\
p_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=x_{3} x_{4}+x_{3} x_{5}+x_{2}+x_{4} .
\end{gathered}
$$

Use this knowledge to solve the systems of multivariate quadratic equations below:
(a) $P(x)=(0,0,0)$
(b) $P(x)=(1,1,0)$
4. (a) There is a unique monic irreducible polynomial $f \in \mathbb{F}_{2}[x]$ of degree 2 . What is f ?
(b) Let β be a root of f, where f is as in part (a). Then $\mathbb{F}_{4}=\mathbb{F}_{2}[\beta]$. Write a multiplication table for $\mathbb{F}_{2}[\beta]$.
5. We will now work over \mathbb{F}_{3}, the field with three elements. There are three monic irreducible polynomials of degree 2 over \mathbb{F}_{3} :

$$
f_{1}(x)=x^{2}+1, \quad f_{2}(x)=x^{2}+x+2, \quad f_{3}(x)=x^{2}+2 x+2 .
$$

(a) Let β be a root of f_{1}. Then $\mathbb{F}_{9}=\mathbb{F}_{3}[\beta]$. Compute the following quantities in $\mathbb{F}_{3}[\beta]$. To obtain credit, your answer must be in the form $a_{0}+a_{1} \beta$, with $a_{0}, a_{1} \in \mathbb{F}_{3}$.
i. $\beta(2 \beta+1)$
ii. β^{-1} (the multiplicative inverse of β, which is the unique $a_{0}+a_{1} \beta$ such that $\left.\beta\left(a_{0}+a_{1} \beta\right)=1\right)$
iii. $(\beta+2)^{-1}$
(b) Now let γ be a root of f_{2}. Then $\mathbb{F}_{9}=\mathbb{F}_{3}[\gamma]$, so it must be the case that somehow $\mathbb{F}_{3}[\beta]=\mathbb{F}_{3}[\gamma]!$ What this means is that there is a map $\phi: \mathbb{F}_{3}[\beta] \rightarrow \mathbb{F}_{3}[\gamma]$ that is a field isomorphism (a bijection respecting addition and multiplication). It is a fact that to specify ϕ, it suffices to say what $\phi(\beta)$ is (then $\phi\left(a_{0}+a_{1} \beta\right)=a_{0}+a_{1} \phi(\beta)$, which tells you the image of everything in $\left.\mathbb{F}_{3}[\beta]\right)$. It is another fact that $\phi(\beta)$ must be some element $a_{0}+a_{1} \gamma$ such that

$$
\left(a_{0}+a_{1} \gamma\right)^{2}+1=0
$$

(In other words, $\phi(\beta)$ must be a root of f_{1} !) Find $a_{0}+a_{1} \gamma$ such that $\left(a_{0}+a_{1} \gamma\right)^{2}+$ $1=0$.
(c) Let δ be a root of f_{3}. Find $a_{0}+a_{1} \delta$ such that $\left(a_{0}+a_{1} \delta\right)^{2}+1=0$.
6. For each of the HFE polynomials $G \in \mathbb{F}_{p^{r}}[X]$ below, give the associated multivariate quadratic polynomial $G:\left(\mathbb{F}_{p}\right)^{r} \rightarrow\left(\mathbb{F}_{p}\right)^{r}$. In each case, use the field structure given.
(a) $G(X) \in \mathbb{F}_{9}[X], G(X)=X^{10}+2 X^{3}+1, \mathbb{F}_{9}=\mathbb{F}_{3}[\beta], \beta$ a root of $f(x)=x^{2}+1$
(b) $G(X) \in \mathbb{F}_{4}[X], G(X)=X^{9}+X^{5}+X^{4}+1, \mathbb{F}_{4}=\mathbb{F}_{2}[\beta], \beta$ a root of $f(x)=x^{2}+x+1$
(c) $G(X) \in \mathbb{F}_{8}[X], G(X)=X^{9}+X^{5}+X^{4}+1, \mathbb{F}_{8}=\mathbb{F}_{2}[\beta], \beta$ a root of $f(x)=x^{3}+x+1$

Extra problem for graduate credit:

1. We haven't talked about how to find the roots of a polynomial $G(X) \in \mathbb{F}_{q}[X]$. One way to do it is the so-called Berlekamp algorithm, which relies on the computation of $\operatorname{gcd}\left(G(X), X^{q}-X\right)$. Explain why the roots of $\operatorname{gcd}\left(G(X), X^{q}-X\right)$ are exactly the roots of G that are in \mathbb{F}_{q}.
