This homework is due on Friday, March 22.

1. Let C be a code over a field and d its Hamming distance. Prove that d is a metric. In other words, prove that if c_{1}, c_{2} and c_{3} are code words, then
(a) $d\left(c_{1}, c_{2}\right) \geq 0$, with $d\left(c_{1}, c_{2}\right)=0$ if and only if $c_{1}=c_{2}$;
(b) $d\left(c_{1}, c_{2}\right)=d\left(c_{2}, c_{1}\right)$; and
(c) $d\left(c_{1}, c_{2}\right) \leq d\left(c_{1}, c_{3}\right)+d\left(c_{3}, c_{2}\right)$.
2. Let C be a code with minimum distance $d(C)$. Show that
(a) C can detect up to s errors if $d(C) \geq s+1$; and
(b) C can correct up to t errors if $d(C) \geq 2 t+1$.
3. (adapted from TW Section 18.12, problem 5) Let $C=\{(0,0,1),(1,1,1),(1,0,0),(0,1,0)\}$ be a code over \mathbb{F}_{2}.
(a) Show that C is not a linear code.
(b) Compute $d(C)$, the minimum distance of C.
4. Let C be a linear code. Prove that $d(C)$, the minimum distance of C, is equal to the smallest Hamming weight of nonzero code words:

$$
d(C)=\min \{\operatorname{wt}(c): 0 \neq c \in C\} .
$$

5. Consider the linear binary code C given by the generating matrix

$$
G=\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right)
$$

(a) Please enumerate all of the elements of C.
(b) Using the notation from the book, what are n and k for this code?
(c) Give the parity check matrix H of this code.
(d) What is $d(C)$, the minimal distance?
(e) How many errors can C detect? How many errors can C correct? You can use the results from problem 2 to answer this question.
6. Consider the n-repetition code C_{n} over \mathbb{F}_{2}, which encodes the 1-bit message $m=0$ with the n-bit codeword $0000 \ldots 0$ and the 1 -bit message $m=1$ with the n-bit codeword 1111... 1 .
(a) For this part of the problem, let $n=3$, so that the code is given by $C_{3}=$ $\{000,111\}$.
i. Prove that C_{3} is a linear code.
ii. Using the notation from the book, what are n and k for this code?
iii. What is $d\left(C_{3}\right)$, the minimal distance?
iv. How many errors can C_{3} correct?
(b) For this part of the problem, let now $n=4$, so that the code is given by $C_{4}=$ $\{0000,1111\}$. Please answer the same questions, but about C_{4} :
i. Prove that C_{4} is a linear code.
ii. Using the notation from the book, what are n and k for this code?
iii. What is $d\left(C_{4}\right)$, the minimal distance?
iv. How many errors can C_{4} correct?
(c) Finally, generalize your results to any n : Consider C_{n} the n-repetition code over \mathbb{F}_{2}.
i. Prove that C_{n} is a linear code.
ii. Using the notation from the book, what are n and k for this code?
iii. What is $d\left(C_{4}\right)$, the minimal distance?
iv. How many errors can C_{n} correct?
7. Consider the linear binary code C given by the generating matrix

$$
G=\left(\begin{array}{llllllllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0
\end{array}\right)
$$

(This is not important to this question, but it is an example of a Goppa code.)
(a) Compute the parity check matrix H of this code.
(b) For each of the following vectors, compute the syndrome. Which vectors below are codewords?

> i. $v_{1}=[0,1,0,1,1,0,1,1,1,0,0,0]$
> ii. $v_{2}=[1,1,1,0,1,1,0,1,0,0,1,0]$
> iii. $v_{3}=[0,1,1,1,1,0,0,1,1,0,0,0]$
> iv. $v_{4}=[0,1,0,0,1,0,1,1,1,0,0,0]$
8. Please read Example 4 of Section 18.1 of Trappe and Washington's book, on the Hamming [7, 4] code. (You can find a scan of it on Blackboard.) The "mysterious" decoding algorithm is simply this: Given a received message v, the vector $v H^{T}$ will always be a row of H^{T}, or zero. Since H is a parity matrix, if $v H^{T}$ is zero then v is
a codeword and does not need to be corrected (it is already decoded). Otherwise, if $v H^{T}$ is the i th row of H^{T}, then v is a codeword c but with an error in the i th entry. To correct v to a codeword it suffices then to flip the i th entry of v.
For this problem, please use the Hamming [7, 4] code to decode the following received messages:
(a) $v_{1}=[1,1,1,0,1,0,1]$
(b) $v_{2}=[1,0,1,0,0,0,1]$
(c) $v_{3}=[0,0,1,1,1,0,0]$
(d) $v_{4}=[1,0,1,0,0,1,1]$
9. Suppose that Alice publishes the "scrambled" generating matrix

$$
G_{1}=\left(\begin{array}{llllllllllll}
1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0
\end{array}\right)
$$

based on a code that can correct $t=5$ errors. Encrypt the following messages to send to her. Don't forget to introduce a random error! You will be graded on whether your messages can be correctly decrypted.
(a) $m_{1}=[1,0,1,1]$
(b) $m_{2}=[0,0,1,1]$
10. Now suppose that you are Alice, and you have set up a McEliece cryptosystem based on the following data: You are using the Hamming [7, 4] code from above, with generating matrix

$$
G=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

You have chosen the invertible matrix

$$
S=\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

and the permutation matrix

$$
P=\left(\begin{array}{lllllll}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right) .
$$

(a) Given that this Hamming code can correct 1 error, what would be your public key (the information that you publish)?
(b) Decrypt the following ciphertexts:
i. $c_{1}=[0,0,1,0,0,1,0]$
ii. $c_{2}=[1,0,1,0,0,1,1]$
iii. $c_{3}=[0,0,1,1,1,0,1]$
iv. $c_{4}=[0,1,1,1,1,0,0]$

No extra problems for graduate credit this time.

