Math 259 - Spring 2019
Homework 3
This homework is due on Wednesday, February 27.

1. For each of the following continued fractions, compute all convergents and the value of the continued fraction. Please do not use a calculator.
(a) $[1 ; 1,2,3]$
(c) $[1 ; 1,2,2,1]$
(e) $[0 ; 2,4,1,2]$
(b) $[0 ; 1,1,2,3]$
(d) $[2 ; 4,1,2]$
2. Compute the continued fraction expansions for the following numbers. You may use a calculator or computer for this problem.
(a) e
(b) $\sqrt{2}$
(c) $\frac{1+\sqrt{5}}{2}$
3. Among the convergents of $\sqrt{15}$, find a rational number that approximates $\sqrt{15}$ to four decimal places. You may use a calculator for this problem.
4. (TW Section 19.4, Problem 3)
(a) Suppose that $\frac{M}{r}$ and $\frac{M_{1}}{r_{1}}$ are two distinct rational numbers, with $0<r<N$ and $0<r_{1}<N$. Show that

$$
\left|\frac{M_{1}}{r_{1}}-\frac{M}{r}\right|>\frac{1}{N^{2}} .
$$

(b) Suppose, as in Shor's algorithm, that we have

$$
\left|\frac{j}{2^{q}}-\frac{M}{r}\right|<\frac{1}{2 N^{2}} \quad \text { and } \quad\left|\frac{j}{2^{q}}-\frac{M_{1}}{r_{1}}\right|<\frac{1}{2 N^{2}} .
$$

Show that $\frac{M}{r}=\frac{M_{1}}{r_{1}}$.
5. Let \mathcal{F} denote the quantum Fourier transform, which acts on the n-qbit superposition $|k\rangle$ by

$$
\mathcal{F}|k\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{j=0}^{2^{n}-1} e^{\frac{2 \pi i}{2^{n}} j k}|j\rangle
$$

and acts on the more general n-qbit superposition $\sum_{k=0}^{2^{n}-1} a_{k}|k\rangle$ by extending linearly. It is a fact then that

$$
\mathcal{F}\left(\sum_{k=0}^{2^{n}-1} a_{k}|k\rangle\right)=\sum_{j=0}^{2^{n}-1} b_{j}|j\rangle,
$$

where b_{j} is the j th Discrete Fourier Transform coefficient of the sequence $\left\{a_{k}\right\}$.
(a) Prove this fact when $n=2$. Hint: It's not so bad to just expand everything out, there's no need to be clever.
(b) The quantum Fourier transform is a quantum gate. Still when $n=2$, write it as a matrix.
6. (adapted from TW Section 19.4, Problem 1) Suppose that you are using Shor's algorithm to compute the multiplicative order of 2 modulo 15 . Throughout this problem we will use the notation set up in class (which will appear in the notes shortly).
(a) What value of q would you take?
(b) Suppose that your measurement in Shor's algorithm is $j=192$. What value would you obtain for r, the multiplicative order of 2 modulo 15 ? Does it agree with the real multiplicative order of 2 modulo 15 ?
(c) Use your value of r to factor 15 .
7. Nevermind, there won't be a problem 7.

Extra problems for graduate credit:

1. (a) Let $x \in \mathbb{R}$. Prove that

$$
\sqrt{x}=1+\frac{x-1}{1+\sqrt{x}}
$$

(b) Use this to give a formula for a (generalized, i.e. not simple) continued fraction expansion expression for \sqrt{x}.
(c) Use your formula to check your continued fraction expansion for $\sqrt{2}$ above, and to compute a generalized continued fraction expansion for $\sqrt{3}$.
2. Recall the quantum Fourier transform from problem 4. above.
(a) Prove that for any n,

$$
\mathcal{F}\left(\sum_{k=0}^{2^{n}-1} a_{k}|k\rangle\right)=\sum_{j=0}^{2^{n}-1} b_{j}|j\rangle,
$$

where b_{j} is the j th Discrete Fourier Transform coefficient of the sequence $\left\{a_{k}\right\}$.
(b) Write the quantum Fourier transform as a matrix.

