
Math 259 - Spring 2019
Homework 2 Solutions

1. (a) 10 (b) 110

2. (a) 8 (b) 5

3. Omitted

4. (a) |5| =
√

52 = 5

(b) | − 4| =
√

(−4)2 = 4

(c) |2i| =
√

22 = 2

(d) |3 + 4i| =
√

32 + 42 =
√

25 = 5

(e) | − 1 + 3i| =
√

(−1)2 + 32 =
√

10

(f)
∣∣∣ 1√

2
+ 1√

2
i
∣∣∣ =

√(
1√
2

)2
+
(

1√
2

)2
=
√

1
2

+ 1
2

=
√

1 = 1

5. (a) This would be a 1-qbit superposition. What must be true for that to be the case

is that
∣∣3i
5

∣∣2 +
∣∣4
5

∣∣2 = 1. Indeed we have∣∣∣∣3i5
∣∣∣∣2 +

∣∣∣∣45
∣∣∣∣2 =

(
3

5

)2

+

(
4

5

)2

=
9

25
+

16

25
=

25

25
= 1.

So this is a valid 1-qbit superposition. The probability of observing |0〉 is
∣∣3i
5

∣∣2 = 9
25

and the probability of observing |1〉 is
∣∣4
5

∣∣2 = 16
25

.

(b) This also would be a 1-qbit superposition. We need that
∣∣1
2

∣∣2+
∣∣1
2

∣∣2 = 1. However,
that is not the case:∣∣∣∣12

∣∣∣∣2 +

∣∣∣∣12
∣∣∣∣2 =

(
1

2

)2

+

(
1

2

)2

=
1

4
+

1

4
=

1

2
6= 1.

Therefore this is not a valid superposition.

(c) This would be a 3-qbit superposition. For this to be true, we need
∑7

k=0

∣∣∣ 1
2
√
2

∣∣∣2 =

1. Indeed we have

7∑
k=0

∣∣∣∣ 1

2
√

2

∣∣∣∣2 = 8

(
1

2
√

2

)2

= 8

(
1

4 · 2

)
= 8 · 1

8
= 1.

So this is a valid 3-qbit superposition. The probability of observing the states

|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉 and |111〉 are each
∣∣∣ 1
2
√
2

∣∣∣2 = 1
8
.
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(d) This would be a general n-qbit superposition. For this to be true this time we

would need
∑2n−1

k=0

∣∣∣ 1√
2n

∣∣∣2 = 1. Indeed we have

2n−1∑
k=0

∣∣∣∣ 1√
2n

∣∣∣∣2 = 2n
(

1√
2n

)2

= 2n
(

1

2n

)
= 1.

So this is again a valid superposition. The probability of observing any of the 2n

possible states |00 . . . 0〉 through |11 . . . 1〉, as they range through all possibilities

for n-bit binary numbers, are each
∣∣∣ 1√

2n

∣∣∣2 = 1
2n

.

6. (a) We will use the following notation: To show that we have applied the Hadamard
gate to the first qbit, and that this controls the outcome of the first qbit of the
answer, we will write

|0·〉 7→ 1√
2
|0·〉+

1√
2
|1·〉.

When we separately apply the Hadamard gate to the second qbit, and this controls
the outcome of the second qbit of the answer, we will get

| · 0〉 7→ 1√
2
| · 0〉+

1√
2
| · 1〉.

Now to get |00〉 as the outcome, we must get |0·〉 and also | ·0〉. To get |01〉 as the
outcome, we must get |0·〉 and |·1〉, etc. Since we are applying the Hadamard gate
to the first and the second qbit independently, the coefficients of each outcome
(in the first and the second qbit) get multiplied to get the coefficient of the overall
outcome. This gives us:

|00〉 7→ (
1√
2
|0·〉+

1√
2
|1·〉)⊗ (

1√
2
| · 0〉+

1√
2
| · 1〉)

7→ 1√
2

1√
2
|00〉+

1√
2

1√
2
|01〉+

1√
2

1√
2
|10〉+

1√
2

1√
2
|11〉

7→ 1

2
|00〉+

1

2
|01〉+

1

2
|10〉+

1

2
|11〉

(We use here ⊗ for our multiplication since this is the correct “kind” of multipli-
cation to use here, even though we haven’t talked about it. Might as well get the
notation right.)

So indeed, if there is a way to apply the Hadamard gate to each qbit of a 2-qbit
superposition separately (there is!) then when the superposition |00〉 is entered,
the superposition 1

2
|00〉+ 1

2
|01〉+ 1

2
|10〉+ 1

2
|11〉 will come out. Yay!

After we have applied this new gate, the probability of observing |00〉, |01〉, |10〉
or |11〉 will each be

∣∣1
2

∣∣2 =
(
1
2

)2
= 1

4
. So we have gone from a superposition

with no uncertainty (it was |00〉 with probability 1) to a superposition where each
outcome is equally likely. This is handy.
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(b) But what does the gate do to other superpositions? What if we enter |01〉, |10〉
or |11〉? Or a superposition of these four states? The gate can be applied to so
much more than just the input |00〉!
We compute what the gate does by first computing what it does to |01〉, |10〉 and
|11〉, and then extending linearly to a superposition a0|00〉+a1|01〉+a2|10〉+a3|11〉.
Throughout we will use that

|0·〉 7→ 1√
2
|0·〉+

1√
2
|1·〉,

| · 0〉 7→ 1√
2
| · 0〉+

1√
2
| · 1〉,

|1·〉 7→ 1√
2
|0·〉 − 1√

2
|1·〉,

| · 1〉 7→ 1√
2
| · 0〉 − 1√

2
| · 1〉.

Then we have:

|01〉 7→ (
1√
2
|0·〉+

1√
2
|1·〉)⊗ (

1√
2
| · 0〉 − 1√

2
| · 1〉)

7→ 1

2
|00〉 − 1

2
|01〉+

1

2
|10〉 − 1

2
|11〉,

and also

|10〉 7→ (
1√
2
|0·〉 − 1√

2
|1·〉)⊗ (

1√
2
| · 0〉+

1√
2
| · 1〉)

7→ 1

2
|00〉+

1

2
|01〉 − 1

2
|10〉 − 1

2
|11〉,

and finally

|11〉 7→ (
1√
2
|0·〉 − 1√

2
|1·〉)⊗ (

1√
2
| · 0〉 − 1√

2
| · 1〉)

7→ 1

2
|00〉 − 1

2
|01〉 − 1

2
|10〉+

1

2
|11〉.
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By linearity, we then have that

a0|00〉+ a1|01〉+ a2|10〉+ a3|11〉 7→ a0(
1

2
|00〉+

1

2
|01〉+

1

2
|10〉+

1

2
|11〉)

+ a1(
1

2
|00〉 − 1

2
|01〉+

1

2
|10〉 − 1

2
|11〉)

+ a2(
1

2
|00〉+

1

2
|01〉 − 1

2
|10〉 − 1

2
|11〉)

+ a3(
1

2
|00〉 − 1

2
|01〉 − 1

2
|10〉+

1

2
|11〉)

7→ 1

2
(a0 + a1 + a2 + a3)|00〉

+
1

2
(a0 − a1 + a2 − a3)|01〉

+
1

2
(a0 + a1 − a2 − a3)|10〉

+
1

2
(a0 − a1 − a2 + a3)|11〉.

This last expression describes the gate completely; it says what happens to any
superposition that enters the gate.

Now we simply must write the matrix that sends

(a0, a1, a2, a3) 7→
(

1

2
(a0 + a1 + a2 + a3),

1

2
(a0 − a1 + a2 − a3),

1

2
(a0 + a1 − a2 − a3),

1

2
(a0 − a1 − a2 + a3)

)
.

This is the matrix

1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

This is our new gate!

(c) We would do the exact same thing, but with three qbits.

Sparing you the details, we would get the matrix

1

2
√

2



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


.
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7. (a)

input output
00 00
01 10
10 01
11 11

(b) There are two ways to solve this part. Either you just kind of have a good feeling
for those things and “just know” that the matrix is

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,

or it might be easier to first answer part (c) and say, yes, this is a quantum gate
(see part (c) for why), and say that this would send the superposition

a0|00〉+ a1|01〉+ a2|10〉+ a3|11〉 7→ a0|00〉+ a1|10〉+ a2|01〉+ a3|11〉
7→ a0|00〉+ a2|01〉+ a1|10〉+ a3|11〉.

So we want the matrix that sends

(a0, a1, a2, a3) 7→ (a0, a2, a1, a3),

which is the matrix 
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

I’m not sure what’s easiest, it depends on what one is comfortable with.

(c) In any case, yes, this gate is a quantum gate!

• It is reversible. We can see this either by looking at the list of input/outputs
(each output appears exactly once, so we can reverse the gate, or in a more
fancy way we can see that the gate gives a bijection), by reasoning that the
gate must be reversible because it is its own inverse (we can swap the bits
back!) or by writing the matrix and seeing that the matrix is invertible
(which we can see by computing its determinant for example, or seeing that
no row/column is a linear combination of the others). Anyway, it is reversible.

• It also sends superpositions with |a0|2 + |a1|2 + |a2|2 + |a3|2 = 1 to superposi-
tions with the same property. This is not difficult to see, since

|a0|2 + |a2|2 + |a1|2 + |a3|2 = |a0|2 + |a1|2 + |a2|2 + |a3|2 = 1.
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8. (a) This is of the form reiθ with r = 4 and θ = 2π
3

. Then

x = 4 cos

(
2π

3

)
= 4 · −1

2
= −2,

and

y = 4 sin

(
2π

3

)
= 4 ·

√
3

2
= 2
√

3,

so z = 2 + 2
√

3i.

(b) This is of the form z = x+ iy with x = −1 and y = −1, so

r =
√

(−1)2 + (−1)2 =
√

1 + 1 =
√

2.

Now to find θ is it tempting to just type in θ = arctan(1), but that will output
π
4
. If we graph the point though, we see that in fact θ = 5π

4
. So z =

√
2e

5πi
4 .

(c) For this complex number we have r = 2 and θ = 7π
4

, so

x = 2 cos

(
7π

4

)
= 2 ·

√
2

2
=
√

2,

and

y = 2 sin

(
7π

4

)
= 2 · −

√
2

2
= −
√

2,

so z =
√

2−
√

2i.

(d) This complex number has x = 0 and y = 5, so

r =
√

02 + 52 = 5,

and again for the angle it’s probably best to just graph it and see that θ = π
2
. So

z = 5e
πi
2 .

9. (a) The eighth roots of unity are

1, e
πi
4 , e

πi
2 = i, e

3πi
4 , eπi = −1, e

5πi
4 , e

3πi
2 = −i, e

7πi
4 .

The primitive eighth roots of unity are

e
πi
4 , e

3πi
4 , e

5πi
4 , e

7πi
4 .

(b) It must be the case that gcd(j, n) = 1.
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10. The base case is n = 2, in which case we can verify directly that

x2 − 1 = (x− 1)(1 + x).

Now let’s assume that xn−1 − 1 = (x− 1)
∑n−2

k=0 x
k. Then we have

xn − 1 = xn − xn−1 + xn−1 − 1

= xn−1(x− 1) + (x− 1)
n−2∑
k=0

xk

= (x− 1)

(
xn−1 +

n−2∑
k=0

xk

)

= (x− 1)
n−1∑
k=0

xk.

11. To help us, let’s write down the first several terms of this sequence:

1, 2, 4, 8, 1, 2, 4, 8, . . .

We can see that the period of this sequence is 4. If we go up to 232, then the length of
the sequence will be 33 (remember about the 0th term!) and the frequency will be 33

4
.

12. (a) i. The period is 4 and the frequency is 2

ii. After we do our rearranging as in the notes, we have

bj =
1√
8

(
c0(z

0
j + zj) + c1e

2πij
8 (z0j + zj) + c2e

4πij
8 (z0j + zj) + c3e

6πij
8 (z0j + zj)

)
,

with zj = e2πi
j
2 , a second root of unity. We see that if j is odd, then zj is a

primitive second root of unity (zj = −1) and the sum bj = 0. Otherwise, if j
is even, then zj = 1, so z0j + zj = 2, so

bj =
1√
2

(
c0 + e

πij
4 c1 + e

πij
2 c2 + e

3πij
4 c3

)
,

which in general is “big” (at least it’s not zero).
If we do two examples, we might get the following: For the sequence 1, 2, 3, 4, 1, 2, 3, 4,
we have

j 0 1 2 3 4 5 6 7
bj 7.07 0 −1.414− 1.414i 0 −1.414 0 −1.414 + 1.414i 0

.

For the sequence −3, 1,−1, 5, 3, 1,−1, 5, we have

j 0 1 2 3 4 5 6 7
bj 5.656 0 2.828− 2.828i 0 −2.828 0 2.828 + 2.828i 0

.
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(b) i. The period is 3 and the frequency is 10
3

.

ii. After we do our rearranging as in the notes, we have

bj =
1√
10

(
c0(z

0
j + zj + z2j + z3j ) + c1e

2πij
10 (z0j + zj + z2j ) + c2e

4πij
10 (z0j + zj + z2j )

)
,

where zj = e2πi
3j
10 .

We have that 3j
10

is an integer when j = 0, as usual. After, that it is near an

integer when j = 3 or j = 7 (at those points 3j
10

is 9
10

and 21
10

, respectively),
or when j = 4 or j = 6 (at those points we get 12

10
and 18

10
respectively). So

the values of bj should be large when j = 3, 4, 6 and 7, which are very near
“multiples” of 10

3
(after all, 10

3
is between 3 and 4, but closer to 3, and 3 and

6 are multiples of 3, and 4 is a multiple of 4 and 7 is a little bit larger than
a multiple of 3).
The number zj is close to being a third or a fourth root of unity (both of
which would make some of the sums of roots of unity disappear) when 3j

10
is

close to a fraction a
3

or b
4
, but a is not divisible by 3 and b is not divisible by

4. That happens basically for all of the other values of j, so all other ones
should give small values for bj.
If we do two examples, we might get the following:
For the sequence 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, we have

j 0 1 2 3 4 5 6 7 8 9
|bj| 6.00 0.345 0.488 1.606 0.679 0.316 0.679 1.606 0.488 0.346

.

(Note that here we record absolute values since the numbers all have more
digits; otherwise they don’t fit neatly on one row.)
For the sequence 10,−1, 4, 10,−1, 4, 10,−1, 4, 10, we have

j 0 1 2 3 4 5 6 7 8 9
|bj| 15.495 1.961 2.748 8.924 3.625 1.581 3.625 8.924 2.748 1.961

.

Extra problems for graduate credit:

1. (a) The gate of parts (a) and (b) is H ⊗H and the gate of part (c) is H ⊗H ⊗H.

(b) We prove this by induction. We already have the base case n = 1, by definition
of the Hadamard gate H.

Now suppose thatGn = H⊗n sends |0〉 to
∑2n−1

k=0
1√
2n
|k〉, and consider the quantum

gate Gn+1 = H ⊗Gn.

This is, by definition of the Kronecker product, the block matrix(
1√
2
Gn

1√
2
Gn

1√
2
Gn − 1√

2
Gn

)
.
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To see the action of Gn+1 on |0〉, we must see where this matrix sends the vector
( 1 0 0 ...0 ) ∈ F2n+1

2 , which is how Gn+1 acts on |0〉. By the definition of matrix
multiplication, the first 2n entries of that vector are given by the product of 1√

2
Gn

with ( 1 0 0 ... 0 ) ∈ F2n

2 , which is how 1√
2
Gn acts on |0〉, and the last 2n entries

of that vector are also given by the product of 1√
2
Gn with ( 1 0 0 ... 0 ) ∈ F2n

2 . By

induction, the product of Gn with ( 1 0 0 ... 0 ) ∈ F2n

2 is a vector all of whose entries
are 1√

2n
.

Therefore, the first 2n entries of the action of Gn+1 on |0〉 are 1√
2

1√
2n

= 1√
2n+1

, and

the last 2n entries are also 1√
2n+1

. So indeed, Gn+1 sends |0〉 to

2n+1−1∑
k=0

1√
2n+1
|k〉.

2. (a) Consider the sum ∑
0≤c<2m

c≡ c0 (mod 2s)

e
2πicx
2m .

As suggested by the hint, rather than writing c ≡ c0 (mod 2s), we will write
c = c0 + 2sj, with 0 ≤ j < 2m−s. Note that if we let 0 ≤ j < 2m−s in this
expression, then we get exactly all 0 ≤ c < 2m with c ≡ c0 (mod 2s), so that

∑
0≤c<2m

c≡ c0 (mod 2s)

e
2πicx
2m =

2m−s−1∑
j=0

e
2πi(c0+2sj)x

2m .

Now we have

2πi(c0 + 2sj)x

2m
=

2πic0x

2m
+

2πi2sjx

2m
=

2πic0x

2m
+

2πi2sx

2m
j,

so

e
2πi(c0+2sj)x

2m = e
2πic0x
2m ·

(
e

2πi2sx
2m

)j
,

and our sum can be manipulated to look like

∑
0≤c<2m

c≡ c0 (mod 2s)

e
2πicx
2m = e

2πic0x
2m

2m−s−1∑
j=0

(
e

2πi2sx
2m

)j
.

This is indeed the geometric sum
∑n

j=0 r
j, with n = 2m−s − 1 and r = e

2πi2sx
2m .

Now if r = 1, then it is straightforward to see that the sum is n+ 1 (since are just
adding 1 n+ 1 times). If r = −1, then the sum depends on whether n is even or
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odd (it is either 0 if n is odd, since we end on a −1 term, or it is 1 if n is even,
since we end on a 1 term). Otherwise, if |r| 6= 1, the sum is 1−rn+1

1−r .

We have that r = e
2πi2sx

2m = 1 exactly when 2sx
2m

is an integer, which is to say that
2sx is divisible by 2m, or x is divisible by 2m−s, or x ≡ 0 (mod 2m−s). Then the
sum is ∑

0≤c<2m

c≡ c0 (mod 2s)

e
2πicx
2m = e

2πic0x
2m 2m−s,

as claimed.

Suppose now that x is such that r = e
2πi2sx

2m = −1. In that case, since 2m−s − 1 is
certainly odd, the sum is 0, again as claimed.

Finally, in all other cases we have

∑
0≤c<2m

c≡ c0 (mod 2s)

e
2πicx
2m = e

2πic0x
2m

1−
(
e

2πi2sx
2m

)2m−s

1− e 2πi2sx
2m

,

but (
e

2πi2sx
2m

)2m−s

= e2πix =
(
e2πi
)x

= 1x = 1,

since x is an integer. Therefore

∑
0≤c<2m

c≡ c0 (mod 2s)

e
2πicx
2m = e

2πic0x
2m

1−
(
e

2πi2sx
2m

)2m−s

1− e 2πi2sx
2m

= e
2πic0x
2m

1− 1

1− e 2πi2sx
2m

= 0,

again as claimed.

3. I did only two examples of each but I did more in the notes!
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