Math 259 - Spring 2019
Homework 1 Solutions

1. This problem is just to make sure that everyone can do some basic computations using any software they are comfortable with. I am personally using Sage, but anything will do.
(a) We have that $N=27894437$, and $\varphi(N)=(p-1)(q-1)=3700 \times 7536=27883200$. Then we have that $d \equiv e^{-1} \equiv 443^{-1} \equiv 10259507(\bmod 27883200)$.
(b) To encrypt we simply compute $c \equiv m^{e} \equiv 11034007^{443} \equiv 19717832(\bmod 27894437)$.
(c) To decrypt we compute $m \equiv c^{d} \equiv 3003890^{10259507} \equiv 12990712(\bmod 27894437)$.
2. To get $N=p q$ from $\varphi(N)=(p-1)(q-1)$, we need a relationship between N and $\varphi(N)$. Expanding $\varphi(N)$, we have that $\varphi(N)=(p-1)(q-1)=p q-p-q+1=N-p-q+1$. We can solve this for $p+q$ and say that

$$
p+q=N-\varphi(N)+1=3259499-3255840+1=3660 .
$$

So I'm looking for two numbers p and q such that $p q=3259499$ and $p+q=3660$. This is two equations in two unknowns, which I should be able to solve. I can say that $p=3360-q$, and substituting into the first equation I get that

$$
3259499=p q=(3660-q) q=3660 q-q^{2}
$$

or

$$
q^{2}-3360 q+3259499=0
$$

This can be solved using the quadratic formula:
$q=\frac{3660 \pm \sqrt{3360^{2}-4 \times 3259499}}{2}=\frac{3660 \pm \sqrt{357604}}{2}=\frac{3660 \pm 598}{2}=1531$ or 2129.
Turns out that q can be either, and then p will be the other one (check this using the relation $p=3660-q)$. So $N=1531 \times 2129$.
3. Just so we don't have to keep writing such big numbers, let

$$
x=516107, \quad y=187722, \quad \text { and } \quad N=642401 .
$$

Then putting the two given congruences together, we get that

$$
x^{2} y^{2}=(x y)^{2} \equiv 2^{2} \cdot 7^{2}=14^{2} \quad(\bmod N) .
$$

Another way to write this is as

$$
(x y)^{2}-14^{2} \equiv 0 \quad(\bmod N)
$$

or

$$
(x y-14)(x y+14) \equiv 0 \quad(\bmod N) .
$$

To be explicit, we have that

$$
x y-14=96884638240
$$

and

$$
x y+14=96884638268 .
$$

How does any of this help us? I'm glad you ask. We have that

$$
96884638240 \times 96884638268 \equiv 0 \quad(\bmod N)
$$

and $N=p q$ for some product of two primes. This means that there is an integer k such that

$$
96884638240 \times 96884638268=k N=k p q .
$$

Now since p and q are primes, they don't "break up" any more under multiplication. So it is forced that p divides either 96884638240 or 96884638268 , and same for q. In other words, we must have that

$$
\operatorname{gcd}(96884638240, N)>1 \quad \text { or } \quad \operatorname{gcd}(96884638268, N)>1
$$

Now we may just hope for the best (that we don't have $\operatorname{gcd}(96884638240, N)=1$ and $\operatorname{gcd}(96884638268, N)=N$ or vice-versa, but graduate students will prove that this doesn't happen ever!) and compute the gcd:

$$
\operatorname{gcd}(96884638240, N)=1129
$$

and

$$
\operatorname{gcd}(96884638268, N)=569
$$

which in fact does factor N.
4. First, we have that for each $i=1,2, \ldots, k$, we have

$$
c_{i} \equiv m^{e} \quad\left(\bmod N_{i}\right)
$$

Therefore, we also have

$$
c \equiv m^{e} \quad\left(\bmod N_{i}\right),
$$

for each $i=1,2, \ldots, k$.
Now since this one number works modulo each N_{i}, it must also work modulo the product of the $N_{i} \mathrm{~s}$, i.e.

$$
c \equiv m^{e} \quad\left(\bmod \prod_{i=1}^{k} N_{i}\right) .
$$

This is ensured by the Chinese Remainder Theorem, which states that there is a unique simultaneous "lift" of classes modulo N_{i} for each i to a class modulo $\prod N_{i}$.
So far nothing very special has happened. Now comes the magic: Since $m<N_{i}$ for each i, and $e \leq k$, we must have that

$$
m^{e}<\prod_{i=1}^{k} N_{i}
$$

This is because on the left there are few small numbers multiplied together and on the right there are many big numbers multiplied together.
We also have that $c<\prod_{i=1}^{k} N_{i}$. But two numbers that are less than $\prod_{i=1}^{k} N_{i}$ and equal modulo $\prod_{i=1}^{k} N_{i}$, must be actually equal as integers!
Therefore

$$
c=m^{e}
$$

full stop, no congruence. And $m=\sqrt[e]{c}$. Now this is a root in the integers (not modulo anything) which is easy to compute.
5. This time we have two ciphertexts, c_{1} and c_{2}, and we have

$$
c_{1} \equiv m^{e} \quad(\bmod N) \quad \text { and } \quad c_{2} \equiv m^{f} \quad(\bmod N)
$$

with the same N and m.
Using the hint, we assume that Eve knows a and b with $a e+b f=1$. Then Eve wins by computing $c_{1}^{a} c_{2}^{b}(\bmod N)$, because we have that

$$
\begin{aligned}
c_{1}^{a} c_{2}^{b} & \equiv\left(m^{e}\right)^{a}\left(m^{f}\right)^{b} \quad(\bmod N) \\
& \equiv m^{a e} m^{b f} \quad(\bmod N) \\
& \equiv m^{a e+b f} \quad(\bmod N) \\
& \equiv m \quad(\bmod N)
\end{aligned}
$$

6. Bob will send

$$
c_{1} \equiv g^{b} \equiv 5^{33} \equiv 7 \quad(\bmod 73)
$$

and

$$
c_{2} \equiv m \cdot h^{b} \equiv 62 \cdot 49^{33} \equiv 68 \quad(\bmod 73)
$$

7. I found $a=156$ by brute force. It was fast because the numbers are relatively small, but there is nothing really smart I can think to do. However, if you know enough Python it's not too annoying:
```
for i in range(1223):
    k = 5**i % 1223
    if k == 3:
        print i
```

8. (a) $\log _{3} 1=0$
(b) $\log _{3} 3=1$
(c) $\log _{3} 5 \equiv \log _{3}(7 \times 8) \equiv \log _{3} 7+\log _{3} 8 \equiv 11+10 \equiv 21 \equiv 5(\bmod 16)$
(d) Since $1 \equiv 10 \times 12(\bmod 17)$, we have that $\log _{3} 1 \equiv \log _{3} 10+\log _{3} 12(\bmod 16)$ or $0 \equiv 13+\log _{3} 10(\bmod 16)$. Then $\log _{3} 10 \equiv-13 \equiv 3(\bmod 16)$.
9. (a) We have that $2^{7} \equiv 3^{3}(\bmod 101)$. Taking $\log _{3}$ on each side, this gives the equation

$$
\log _{3}\left(2^{7}\right) \equiv \log _{3}\left(3^{3}\right) \quad(\bmod 100)
$$

which we can simplify:

$$
\begin{aligned}
7 \log _{3} 2 & \equiv 3 \log _{3} 3 \quad(\bmod 100) \\
7 \log _{3} 2 & \equiv 3 \cdot 1 \quad(\bmod 100) \\
7 \log _{3} 2 & \equiv 3 \quad(\bmod 100)
\end{aligned}
$$

which we can solve to say that $\log _{3} 2 \equiv 3 \cdot 7^{-1} \equiv 29(\bmod 100)$.
(b) We have $b=6$.
(c) We do the same trick as in part (d) of problem 8 : Since $17 \times 6 \equiv 1(\bmod 101)$, we have that

$$
\begin{aligned}
\log _{3} 17+\log _{3} 6 & \equiv \log _{3} 1 \quad(\bmod 100) \\
\log _{3} 17+\log _{3} 6 & \equiv 0 \quad(\bmod 100)
\end{aligned}
$$

so $\log _{3} 17 \equiv-\log _{3} 6(\bmod 100)$. Now we notice that $6=2 \times 3$, so we can break this up further:

$$
\log _{3} 17 \equiv-\left(\log _{3} 2+\log _{3} 3\right) \equiv-\log _{3} 2-1 \quad(\bmod 100)
$$

From part (a), $\log _{3} 2 \equiv 29(\bmod 100)$, so

$$
\log _{3} 17 \equiv-29-1 \equiv-30 \equiv 70 \quad(\bmod 100)
$$

Extra problems for graduate credit:

1. (a) Say that $k=\ell \varphi(N)$. We have that $\varphi(N)=(p-1)(q-1)$, so

$$
a^{k} \equiv a^{\ell(p-1)(q-1)} \equiv\left(a^{p-1}\right)^{\ell(q-1)} \equiv 1^{\ell(q-1)} \equiv 1 \quad(\bmod p),
$$

where here we used Fermat's Little Theorem, which we can apply because $\operatorname{gcd}(a, N)=$ 1 implies that $\operatorname{gcd}(a, p)=1$. Similarly for q in place of p.
(b) Again the same argument will apply with q in place of p so we only show that $a^{k+1} \equiv a(\bmod p)$. If $\operatorname{gcd}(a, p)=1$, by part (a) we are done by simply multiplying both sides of the congruence by a.
If $\operatorname{gcd}(a, p) \neq 1$, then it must be the case that $\operatorname{gcd}(a, p)=p$, since p is prime and its only divisors are 1 and p. In particular, this means that p divides a or $a \equiv 0$ $(\bmod p)$. Therefore $a^{k+1} \equiv 0(\bmod p)$ and $a \equiv 0(\bmod p)$, from which it follows that $a^{k+1} \equiv a(\bmod p)$.
(c) From part (b), since $a^{k+1} \equiv a(\bmod p)$ and $a^{k+1} \equiv a(\bmod q)$, by the Chinese Remainder Theorem it follows that $a^{k+1} \equiv a(\bmod N)$ as well, for arbitrary a and arbitrary k a multiple of $\varphi(N)$.
Now if e and d are encryption and decryption exponents for RSA with modulus N, this means that $e d \equiv 1(\bmod \varphi(N))$, or that there is an integer k which is a multiple of $\varphi(N)$ with $e d=1+k$. Now the result follows.
2. Note that actually for this problem to be correct, p and q must be odd primes. We always choose odd primes for RSA, as otherwise it would be easy to see that one of the primes is 2 and therefore to factor N. So let's assume p and q are both odd primes.
(a) First we show that if p is an odd prime and $\operatorname{gcd}(a, p)=1$, then $x^{2} \equiv a(\bmod p)$ has either no solution or two solutions. Suppose that it has a solution, call it b. Then it has another solution, namely $-b$. (Note that $b \not \equiv-b(\bmod p)$, otherwise we would have $2 b \equiv 0(\bmod p)$ which since p is odd would force $b \equiv 0(\bmod p)$. But $b^{2} \equiv a \not \equiv 0(\bmod p)$, so $b \not \equiv 0(\bmod p)$ since $\mathbb{Z} / p \mathbb{Z}$ is a field and doesn't have zero divisors.)
However, $x^{2} \equiv a(\bmod p)$ cannot have more than two solutions. Suppose there were a third solution c (and therefore also a fourth solution $-c$). Choose both b and c such that $0<b, c<\frac{p}{2}$ (if either b or c does not satisfy this, $-b$ or $-c$ will satisfy this, just switch them out). Then $b^{2} \equiv c^{2} \equiv a(\bmod p)$ (after all, b and c are both solutions of $x^{2} \equiv a(\bmod p)$), so

$$
\begin{aligned}
b^{2}-c^{2} & \equiv 0 \quad(\bmod p) \\
(b-c)(b+c) & \equiv 0 \quad(\bmod p)
\end{aligned}
$$

But we have that $0<b+c<p$, so p does not divide $b+c$ and therefore p must divide $b-c$ or $b \equiv c(\bmod p)$, and c is not a new solution. We have therefore proved that if p is an odd prime and $\operatorname{gcd}(a, p)=1$, then $x^{2} \equiv a(\bmod p)$ has either no solution or two solutions.
Now $x^{2} \equiv a(\bmod N)$ is assumed to have a solution. Therefore $x^{2} \equiv a(\bmod p)$ and $x^{2} \equiv a(\bmod q)$ both have solutions too. They each therefore have exactly two solutions, say b and $-b$ are solutions to $x^{2} \equiv a(\bmod p)$ and c and $-c$ are solutions to $x^{2} \equiv a(\bmod q)$. By the Chinese Remainder Theorem, this gives four solutions to $x^{2} \equiv a(\bmod N)$: The solution that lifts $x \equiv b(\bmod p)$ and $x \equiv c$ $(\bmod q)$, the one that lifts $x \equiv b(\bmod p)$ and $x \equiv-c(\bmod q)$, the one that
lifts $x \equiv-b(\bmod p)$ and $x \equiv c(\bmod q)$ and finally the one that lifts $x \equiv-b$ $(\bmod p)$ and $x \equiv-c(\bmod q)$.
(b) In complete contradiction with our notation above, let the four solutions of $x^{2} \equiv a$ $(\bmod N)$ be $b,-b, c$ and $-c$. Then we have that

$$
b^{2} \equiv c^{2} \equiv a \quad(\bmod N)
$$

or

$$
b^{2}-c^{2} \equiv(b-c)(b+c) \equiv 0 \quad(\bmod N)
$$

It suffices to show now that $\operatorname{gcd}(b-c, N)=p$ and $\operatorname{gcd}(b+c, N)=q$ (or vice versa). Note that since $(b-c)(b+c) \equiv 0(\bmod N)$, we know that

$$
\operatorname{gcd}(b-c, N)>1 \quad \text { or } \quad \operatorname{gcd}(b+c, N)>1
$$

as in problem 3 above. The issue here is to prove that N does not divide $b-c$ or $b+c$. If this were the case the gcd computation would just give us back N and not a factor of N.
However, we know that N does not divide $b-c$, because we have assumed that b and c are different modulo N. In the same way, we know that N does not divide $b+c$ because we have assumed that b and $-c$ are different modulo N. Therefore we know that N divides neither $b+c$ nor $b-c$ and so that p must divide one and q the other for their product to be zero modulo N.
Note that this, in retrospect, shows that we did not get lucky in problem 3. Since $x y \not \equiv 14(\bmod N)$, we could have known in advance that the gcd would yield a nontrivial factor of N.
3. (a) Write $a \equiv g^{A}(\bmod p), b \equiv g^{B}(\bmod p)$ and $a b \equiv g^{C}(\bmod p)$, where $0 \leq$ $A, B, C<p-1$ (this is possible since g is a primitive root of p). We have therefore that $g^{C} \equiv g^{A} g^{B} \equiv g^{A+B}(\bmod p)$. Since g is a primitive root of p, we have that $g^{p-1} \equiv 1(\bmod p)$, but no lower power of g is congruent to 1 modulo p. In particular, this means that $g^{C} \equiv g^{D}(\bmod p)$ if and only if $C \equiv D(\bmod p-1)$ (one direction is because $g^{p-1} \equiv 1(\bmod p)$, and the other is because $g^{k} \not \equiv 1$ $(\bmod p)$ for any $0<k<p-1)$. Therefore

$$
C \equiv A+B \quad(\bmod p-1)
$$

or in other symbols,

$$
\log _{g}(a b) \equiv \log _{g}(a)+\log _{g}(b) \quad(\bmod p-1)
$$

(b) Let $p=7$, then 6 is not a primitive root modulo 7 . We also have

$$
2 \equiv \log _{6} 6+\log _{6} 6 \not \equiv \log _{6}(36) \equiv \log _{6} 1 \equiv 0 \quad(\bmod 6)
$$

The correct equation is that, if $\operatorname{ord}_{p} a$ is the multiplicative order of a modulo p (i.e. the smallest positive integer k such that $a^{k} \equiv 1(\bmod p)$, then

$$
\log _{g}(a b) \equiv \log _{g}(a)+\log _{g}(b) \quad\left(\bmod \operatorname{ord}_{p} a\right)
$$

It just so happens that if g is a primitive root of p, then $\operatorname{ord}_{p} g=p-1$, by definition.
(c) i. We have that $g^{0} \equiv 1(\bmod p)$ and $g^{1} \equiv g(\bmod p)$, so the result follows by the definition of $\log _{g}$.
ii. Since $a a^{-1} \equiv 1(\bmod p)$, taking $\log _{g}$ on both sides and using parts (a) and (c)i.we get

$$
\log _{g} a+\log _{g}\left(a^{-1}\right) \equiv 0 \quad(\bmod p-1)
$$

or $\log _{g}\left(a^{-1}\right) \equiv-\log _{g} a(\bmod p-1)$.
Now we can prove the general power formula: If $r>0$, the formula follows by repeated application of part (a). If $r=0$, the formula follows by part (c)i. And if $r<0$, the formula follows by writing $a^{r} \equiv a^{-1} \cdot \ldots \cdot a^{-1}(\bmod p)$, where a^{-1} appears $-r$ times and applying parts (a) and the formula $\log _{g}\left(a^{-1}\right) \equiv$ $-\log _{g} a(\bmod p-1)$ proved above.

