
Math 259 - Spring 2019
Homework 1 Solutions

1. This problem is just to make sure that everyone can do some basic computations using
any software they are comfortable with. I am personally using Sage, but anything will
do.

(a) We have that N = 27894437, and ϕ(N) = (p−1)(q−1) = 3700×7536 = 27883200.
Then we have that d ≡ e−1 ≡ 443−1 ≡ 10259507 (mod 27883200).

(b) To encrypt we simply compute c ≡ me ≡ 11034007443 ≡ 19717832 (mod 27894437).

(c) To decrypt we compute m ≡ cd ≡ 300389010259507 ≡ 12990712 (mod 27894437).

2. To get N = pq from ϕ(N) = (p−1)(q−1), we need a relationship between N and ϕ(N).
Expanding ϕ(N), we have that ϕ(N) = (p−1)(q−1) = pq−p− q+ 1 = N −p− q+ 1.
We can solve this for p + q and say that

p + q = N − ϕ(N) + 1 = 3259499− 3255840 + 1 = 3660.

So I’m looking for two numbers p and q such that pq = 3259499 and p + q = 3660.
This is two equations in two unknowns, which I should be able to solve. I can say that
p = 3360− q, and substituting into the first equation I get that

3259499 = pq = (3660− q)q = 3660q − q2,

or
q2 − 3360q + 3259499 = 0.

This can be solved using the quadratic formula:

q =
3660±

√
33602 − 4× 3259499

2
=

3660±
√

357604

2
=

3660± 598

2
= 1531 or 2129.

Turns out that q can be either, and then p will be the other one (check this using the
relation p = 3660− q). So N = 1531× 2129.

3. Just so we don’t have to keep writing such big numbers, let

x = 516107, y = 187722, and N = 642401.

Then putting the two given congruences together, we get that

x2y2 = (xy)2 ≡ 22 · 72 = 142 (mod N).

Another way to write this is as

(xy)2 − 142 ≡ 0 (mod N),
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or
(xy − 14)(xy + 14) ≡ 0 (mod N).

To be explicit, we have that

xy − 14 = 96884638240

and
xy + 14 = 96884638268.

How does any of this help us? I’m glad you ask. We have that

96884638240× 96884638268 ≡ 0 (mod N),

and N = pq for some product of two primes. This means that there is an integer k
such that

96884638240× 96884638268 = kN = kpq.

Now since p and q are primes, they don’t “break up” any more under multiplication.
So it is forced that p divides either 96884638240 or 96884638268, and same for q. In
other words, we must have that

gcd(96884638240, N) > 1 or gcd(96884638268, N) > 1.

Now we may just hope for the best (that we don’t have gcd(96884638240, N) = 1 and
gcd(96884638268, N) = N or vice-versa, but graduate students will prove that this
doesn’t happen ever!) and compute the gcd:

gcd(96884638240, N) = 1129,

and
gcd(96884638268, N) = 569,

which in fact does factor N .

4. First, we have that for each i = 1, 2, . . . , k, we have

ci ≡ me (mod Ni).

Therefore, we also have
c ≡ me (mod Ni),

for each i = 1, 2, . . . , k.

Now since this one number works modulo each Ni, it must also work modulo the
product of the Nis, i.e.

c ≡ me (mod
k∏

i=1

Ni).
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This is ensured by the Chinese Remainder Theorem, which states that there is a unique
simultaneous “lift” of classes modulo Ni for each i to a class modulo

∏
Ni.

So far nothing very special has happened. Now comes the magic: Since m < Ni for
each i, and e ≤ k, we must have that

me <
k∏

i=1

Ni.

This is because on the left there are few small numbers multiplied together and on the
right there are many big numbers multiplied together.

We also have that c <
∏k

i=1 Ni. But two numbers that are less than
∏k

i=1Ni and equal

modulo
∏k

i=1Ni, must be actually equal as integers!

Therefore
c = me

full stop, no congruence. And m = e
√
c. Now this is a root in the integers (not modulo

anything) which is easy to compute.

5. This time we have two ciphertexts, c1 and c2, and we have

c1 ≡ me (mod N) and c2 ≡ mf (mod N),

with the same N and m.

Using the hint, we assume that Eve knows a and b with ae + bf = 1. Then Eve wins
by computing ca1c

b
2 (mod N), because we have that

ca1c
b
2 ≡ (me)a(mf )b (mod N)

≡ maembf (mod N)

≡ mae+bf (mod N)

≡ m (mod N).

6. Bob will send
c1 ≡ gb ≡ 533 ≡ 7 (mod 73)

and
c2 ≡ m · hb ≡ 62 · 4933 ≡ 68 (mod 73).

7. I found a = 156 by brute force. It was fast because the numbers are relatively small,
but there is nothing really smart I can think to do. However, if you know enough
Python it’s not too annoying:
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for i in range(1223):

k = 5**i % 1223

if k == 3:

print i

8. (a) log3 1 = 0

(b) log3 3 = 1

(c) log3 5 ≡ log3(7× 8) ≡ log3 7 + log3 8 ≡ 11 + 10 ≡ 21 ≡ 5 (mod 16)

(d) Since 1 ≡ 10× 12 (mod 17), we have that log3 1 ≡ log3 10 + log3 12 (mod 16) or
0 ≡ 13 + log3 10 (mod 16). Then log3 10 ≡ −13 ≡ 3 (mod 16).

9. (a) We have that 27 ≡ 33 (mod 101). Taking log3 on each side, this gives the equation

log3(2
7) ≡ log3(3

3) (mod 100)

which we can simplify:

7 log3 2 ≡ 3 log3 3 (mod 100)

7 log3 2 ≡ 3 · 1 (mod 100)

7 log3 2 ≡ 3 (mod 100),

which we can solve to say that log3 2 ≡ 3 · 7−1 ≡ 29 (mod 100).

(b) We have b = 6.

(c) We do the same trick as in part (d) of problem 8: Since 17 × 6 ≡ 1 (mod 101),
we have that

log3 17 + log3 6 ≡ log3 1 (mod 100)

log3 17 + log3 6 ≡ 0 (mod 100),

so log3 17 ≡ − log3 6 (mod 100). Now we notice that 6 = 2× 3, so we can break
this up further:

log3 17 ≡ −(log3 2 + log3 3) ≡ − log3 2− 1 (mod 100).

From part (a), log3 2 ≡ 29 (mod 100), so

log3 17 ≡ −29− 1 ≡ −30 ≡ 70 (mod 100).

Extra problems for graduate credit:

1. (a) Say that k = `ϕ(N). We have that ϕ(N) = (p− 1)(q − 1), so

ak ≡ a`(p−1)(q−1) ≡ (ap−1)`(q−1) ≡ 1`(q−1) ≡ 1 (mod p),

where here we used Fermat’s Little Theorem, which we can apply because gcd(a,N) =
1 implies that gcd(a, p) = 1. Similarly for q in place of p.
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(b) Again the same argument will apply with q in place of p so we only show that
ak+1 ≡ a (mod p). If gcd(a, p) = 1, by part (a) we are done by simply multiplying
both sides of the congruence by a.

If gcd(a, p) 6= 1, then it must be the case that gcd(a, p) = p, since p is prime and
its only divisors are 1 and p. In particular, this means that p divides a or a ≡ 0
(mod p). Therefore ak+1 ≡ 0 (mod p) and a ≡ 0 (mod p), from which it follows
that ak+1 ≡ a (mod p).

(c) From part (b), since ak+1 ≡ a (mod p) and ak+1 ≡ a (mod q), by the Chinese
Remainder Theorem it follows that ak+1 ≡ a (mod N) as well, for arbitrary a
and arbitrary k a multiple of ϕ(N).

Now if e and d are encryption and decryption exponents for RSA with modulus
N , this means that ed ≡ 1 (mod ϕ(N)), or that there is an integer k which is a
multiple of ϕ(N) with ed = 1 + k. Now the result follows.

2. Note that actually for this problem to be correct, p and q must be odd primes. We
always choose odd primes for RSA, as otherwise it would be easy to see that one of the
primes is 2 and therefore to factor N . So let’s assume p and q are both odd primes.

(a) First we show that if p is an odd prime and gcd(a, p) = 1, then x2 ≡ a (mod p)
has either no solution or two solutions. Suppose that it has a solution, call it b.
Then it has another solution, namely −b. (Note that b 6≡ −b (mod p), otherwise
we would have 2b ≡ 0 (mod p) which since p is odd would force b ≡ 0 (mod p).
But b2 ≡ a 6≡ 0 (mod p), so b 6≡ 0 (mod p) since Z/pZ is a field and doesn’t have
zero divisors.)

However, x2 ≡ a (mod p) cannot have more than two solutions. Suppose there
were a third solution c (and therefore also a fourth solution −c). Choose both b
and c such that 0 < b, c < p

2
(if either b or c does not satisfy this, −b or −c will

satisfy this, just switch them out). Then b2 ≡ c2 ≡ a (mod p) (after all, b and c
are both solutions of x2 ≡ a (mod p)), so

b2 − c2 ≡ 0 (mod p)

(b− c)(b + c) ≡ 0 (mod p).

But we have that 0 < b + c < p, so p does not divide b + c and therefore p must
divide b − c or b ≡ c (mod p), and c is not a new solution. We have therefore
proved that if p is an odd prime and gcd(a, p) = 1, then x2 ≡ a (mod p) has
either no solution or two solutions.

Now x2 ≡ a (mod N) is assumed to have a solution. Therefore x2 ≡ a (mod p)
and x2 ≡ a (mod q) both have solutions too. They each therefore have exactly
two solutions, say b and −b are solutions to x2 ≡ a (mod p) and c and −c are
solutions to x2 ≡ a (mod q). By the Chinese Remainder Theorem, this gives four
solutions to x2 ≡ a (mod N): The solution that lifts x ≡ b (mod p) and x ≡ c
(mod q), the one that lifts x ≡ b (mod p) and x ≡ −c (mod q), the one that
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lifts x ≡ −b (mod p) and x ≡ c (mod q) and finally the one that lifts x ≡ −b
(mod p) and x ≡ −c (mod q).

(b) In complete contradiction with our notation above, let the four solutions of x2 ≡ a
(mod N) be b,−b, c and −c. Then we have that

b2 ≡ c2 ≡ a (mod N),

or
b2 − c2 ≡ (b− c)(b + c) ≡ 0 (mod N).

It suffices to show now that gcd(b − c,N) = p and gcd(b + c,N) = q (or vice
versa). Note that since (b− c)(b + c) ≡ 0 (mod N), we know that

gcd(b− c,N) > 1 or gcd(b + c,N) > 1,

as in problem 3 above. The issue here is to prove that N does not divide b− c or
b + c. If this were the case the gcd computation would just give us back N and
not a factor of N .

However, we know that N does not divide b− c, because we have assumed that b
and c are different modulo N . In the same way, we know that N does not divide
b + c because we have assumed that b and −c are different modulo N . Therefore
we know that N divides neither b+ c nor b− c and so that p must divide one and
q the other for their product to be zero modulo N .

Note that this, in retrospect, shows that we did not get lucky in problem 3. Since
xy 6≡ 14 (mod N), we could have known in advance that the gcd would yield a
nontrivial factor of N .

3. (a) Write a ≡ gA (mod p), b ≡ gB (mod p) and ab ≡ gC (mod p), where 0 ≤
A,B,C < p − 1 (this is possible since g is a primitive root of p). We have
therefore that gC ≡ gAgB ≡ gA+B (mod p). Since g is a primitive root of p, we
have that gp−1 ≡ 1 (mod p), but no lower power of g is congruent to 1 modulo p.
In particular, this means that gC ≡ gD (mod p) if and only if C ≡ D (mod p−1)
(one direction is because gp−1 ≡ 1 (mod p), and the other is because gk 6≡ 1
(mod p) for any 0 < k < p− 1). Therefore

C ≡ A + B (mod p− 1)

or in other symbols,

logg(ab) ≡ logg(a) + logg(b) (mod p− 1).

(b) Let p = 7, then 6 is not a primitive root modulo 7. We also have

2 ≡ log6 6 + log6 6 6≡ log6(36) ≡ log6 1 ≡ 0 (mod 6).
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The correct equation is that, if ordp a is the multiplicative order of a modulo p
(i.e. the smallest positive integer k such that ak ≡ 1 (mod p), then

logg(ab) ≡ logg(a) + logg(b) (mod ordp a).

It just so happens that if g is a primitive root of p, then ordp g = p − 1, by
definition.

(c) i. We have that g0 ≡ 1 (mod p) and g1 ≡ g (mod p), so the result follows by
the definition of logg.

ii. Since aa−1 ≡ 1 (mod p), taking logg on both sides and using parts (a) and
(c)i.we get

logg a + logg(a
−1) ≡ 0 (mod p− 1),

or logg(a
−1) ≡ − logg a (mod p− 1).

Now we can prove the general power formula: If r > 0, the formula follows
by repeated application of part (a). If r = 0, the formula follows by part (c)i.
And if r < 0, the formula follows by writing ar ≡ a−1 ·. . .·a−1 (mod p), where
a−1 appears −r times and applying parts (a) and the formula logg(a

−1) ≡
− logg a (mod p− 1) proved above.

7


