Math 259 - Spring 2019
Homework 1
This homework is due on Monday, January 28.

1. (SRS Cryptography, Section 12.9 problem 1) Suppose that $p=3701, q=7537$, and Alice chooses her encryption key to be $e=443$.
(a) What is her decryption key d ?
(b) Bob wishes to send the plaintext message $m=11034007$. What is his ciphertext?
(c) Bob sends another message, and his ciphertext is $c=3003890$. What was his plaintext message?

This problem was mostly just to make sure you can use the computer/do the necessary computation. It is okay to briefly say what you are asking the computer to do.
2. (SRS Cryptography, Section 12.9 problem 2) Alice decides to use RSA to allow others to send her messages, and she chooses her modulus to be $N=p q=3259499$. Through a breach in security, Eve discovers that $\varphi(N)=(p-1)(q-1)=3255840$. Determine p and q without asking a computer to factor N. Show your work (but you might want to use a computer/calculator for the intermediate steps).
3. (TW Coding Theory, Section 6.8 problem 12) You are trying to factor $N=642401$. Suppose you discover that

$$
516107^{2} \equiv 7 \quad(\bmod N)
$$

and that

$$
187722^{2} \equiv 2^{2} \cdot 7 \quad(\bmod N)
$$

Use this information to factor N, but do not just ask a computer to factor N. Show your work (but you again you might want to use a computer/calculator for the intermediate steps).
4. (SRS Cryptography, Section 12.9 problem 7) Suppose that k different RSA users all use the same small encryption exponent $e \leq k$, but different, relatively prime moduli $N_{1}, N_{2}, \ldots N_{k}$. Suppose that Bob encrypts for each of them the same message m, resulting in ciphertexts $c_{1}, c_{2}, \ldots, c_{k}$. Show that if Eve intercepts the ciphertexts, she can recover the original message. (Hint: You may assume without proof that using the Chinese Remainder Theorem, Eve can compute a number

$$
c<\prod_{i=1}^{k} N_{i}
$$

such that for each i,

$$
\left.c \equiv c_{i} \quad\left(\bmod N_{i}\right) .\right)
$$

5. (SRS Cryptography, Section 12.9 problem 5) Alice and Bob are such good friends that they choose to use RSA with the same modulus N, but they use different encryption exponents e and f, that happen to be relatively prime. Charles encrypts and sends the same message m to Alice and Bob. If Eve intercepts both of his ciphertexts, how can she recover the plaintext m ? (Hint: You may assume without proof that since e and f are relatively prime, Eve can compute integers a and b with $a e+b f=1$.)
6. (adapted from SRS Cryptography, Section 11.8 problem 7) Bob wishes to send Alice the message $m=62$. Alice's DLP problem has $(p, g, h)=(73,5,49)$. Bob chooses $b=33$ as his random secret exponent. What is the ciphertext pair $\left(c_{1}, c_{2}\right)$ that he sends?
7. (adapted from TW Coding Theory, Section 7.6 problem 3) To show you how hard solving the discrete logarithm problem is, let $p=1223$ and $g=5$. Try to find a such that $5^{a} \equiv 3(\bmod 1223)$. For your work for this problem, just write down what you tried and how you finally got the answer.
8. Throughout this problem, let $p=17$. In this case, 3 is a primitive root of 17 . Use the properties of the discrete logarithm, and the information given if any, to compute the following. Please show your work.
(a) $\log _{3}(1)$
(b) $\log _{3}(3)$
(c) $\log _{3}(5)$, given that $\log _{3}(7) \equiv 11(\bmod 16), \log _{3}(8) \equiv 10(\bmod 16)$ and $7 \times 8 \equiv 5$ $(\bmod 17)$
(d) $\log _{3}(10)$, given that $\log _{3}(12) \equiv 13(\bmod 16)$ and $10 \times 12 \equiv 1(\bmod 17)$
9. Let $p=101$. The goal of this problem will be to compute a such that $3^{a} \equiv 17$ (mod 101), using a simplified version of the index calculus attack.
(a) We will first compute x such that $3^{x} \equiv 2(\bmod 101)$. We do this by following these steps:

- Compute 2^{7} and reduce your answer modulo 101.
- Factor the new number that you obtained.
- This should give you an equation satisfied by x. Solve this equation.
(b) What is $17^{-1}(\bmod 101)$? Compute this number and call it b.
(c) Use that $17 b \equiv 1(\bmod 101)$ to get a relationship between x from part a) and a such that $3^{a} \equiv 17(\bmod 101)$. Using the value of x you computed in part (a), solve this equation for a.

Extra problems for graduate credit:

1. (TW Coding Theory, Section 6.8, problem 19) Let $N=p q$ be the product of two distinct primes.
(a) Let k be a multiple of $\varphi(N)$. Show that if $\operatorname{gcd}(a, N)=1$, then $a^{k} \equiv 1(\bmod p)$ and $a^{k} \equiv 1(\bmod q)$.
(b) Suppose k is as in part (a), and let a be arbitrary now (so possibly $\operatorname{gcd}(a, N) \neq 1)$. Show that $a^{k+1} \equiv a(\bmod p)$ and $a^{k+1} \equiv a(\bmod q)$.
(c) Let e and d be encryption and decryption exponents for RSA with modulus N. Show that $a^{e d} \equiv a(\bmod N)$ for all a. This shows that we do not need to assume $\operatorname{gcd}(a, N)=1$ in order to use RSA.
2. (SRS Cryptography, Section 12.9 problem 10) Suppose that $N=p q$ is a product of two primes and $\operatorname{gcd}(a, p q)=1$.
(a) Show that if $x^{2} \equiv a(\bmod N)$ has any solutions in $\mathbb{Z} / N \mathbb{Z}$, then it has exactly four solutions.
(b) If, for some $a \in \mathbb{Z} / N \mathbb{Z}$, you know all four solutions, show that you can quickly factor N.
3. (adapted from SRS Cryptography) Let p be a prime and let $g \in(\mathbb{Z} / p \mathbb{Z})^{\times}$.
(a) Show that if g is a primitive root modulo p, then $\log _{g}(a b) \equiv \log _{g}(a)+\log _{g}(b)$ $(\bmod p-1)$.
(b) If g is not a primitive root, give a counterexample to part (a). Give a corrected formula that is true.
(c) Again assume that g is a primitive root modulo p. Show that
i. $\log _{g}(1) \equiv 0(\bmod p-1)$ and $\log _{g}(g) \equiv 1(\bmod p-1)$.
ii. $\log _{g}\left(a^{-1}\right) \equiv-\log _{g}(a)(\bmod p-1)$ and more generally for any integer $\log _{g}\left(a^{r}\right) \equiv$ $r \log _{g}(a)(\bmod p-1)$.
