
Math 259 - Spring 2019
Homework 1

This homework is due on Monday, January 28.

1. (SRS Cryptography, Section 12.9 problem 1) Suppose that p = 3701, q = 7537, and
Alice chooses her encryption key to be e = 443.

(a) What is her decryption key d?

(b) Bob wishes to send the plaintext message m = 11034007. What is his ciphertext?

(c) Bob sends another message, and his ciphertext is c = 3003890. What was his
plaintext message?

This problem was mostly just to make sure you can use the computer/do the necessary
computation. It is okay to briefly say what you are asking the computer to do.

2. (SRS Cryptography, Section 12.9 problem 2) Alice decides to use RSA to allow others
to send her messages, and she chooses her modulus to be N = pq = 3259499. Through
a breach in security, Eve discovers that ϕ(N) = (p− 1)(q − 1) = 3255840. Determine
p and q without asking a computer to factor N . Show your work (but you might want
to use a computer/calculator for the intermediate steps).

3. (TW Coding Theory, Section 6.8 problem 12) You are trying to factor N = 642401.
Suppose you discover that

5161072 ≡ 7 (mod N),

and that
1877222 ≡ 22 · 7 (mod N).

Use this information to factor N , but do not just ask a computer to factor N . Show your
work (but you again you might want to use a computer/calculator for the intermediate
steps).

4. (SRS Cryptography, Section 12.9 problem 7) Suppose that k different RSA users all
use the same small encryption exponent e ≤ k, but different, relatively prime moduli
N1, N2, . . . Nk. Suppose that Bob encrypts for each of them the same message m,
resulting in ciphertexts c1, c2, . . . , ck. Show that if Eve intercepts the ciphertexts, she
can recover the original message. (Hint: You may assume without proof that using the
Chinese Remainder Theorem, Eve can compute a number

c <
k∏

i=1

Ni

such that for each i,
c ≡ ci (mod Ni).)



5. (SRS Cryptography, Section 12.9 problem 5) Alice and Bob are such good friends that
they choose to use RSA with the same modulus N , but they use different encryption
exponents e and f , that happen to be relatively prime. Charles encrypts and sends
the same message m to Alice and Bob. If Eve intercepts both of his ciphertexts, how
can she recover the plaintext m? (Hint: You may assume without proof that since e
and f are relatively prime, Eve can compute integers a and b with ae + bf = 1.)

6. (adapted from SRS Cryptography, Section 11.8 problem 7) Bob wishes to send Alice
the message m = 62. Alice’s DLP problem has (p, g, h) = (73, 5, 49). Bob chooses
b = 33 as his random secret exponent. What is the ciphertext pair (c1, c2) that he
sends?

7. (adapted from TW Coding Theory, Section 7.6 problem 3) To show you how hard
solving the discrete logarithm problem is, let p = 1223 and g = 5. Try to find a such
that 5a ≡ 3 (mod 1223). For your work for this problem, just write down what you
tried and how you finally got the answer.

8. Throughout this problem, let p = 17. In this case, 3 is a primitive root of 17. Use the
properties of the discrete logarithm, and the information given if any, to compute the
following. Please show your work.

(a) log3(1)

(b) log3(3)

(c) log3(5), given that log3(7) ≡ 11 (mod 16), log3(8) ≡ 10 (mod 16) and 7× 8 ≡ 5
(mod 17)

(d) log3(10), given that log3(12) ≡ 13 (mod 16) and 10× 12 ≡ 1 (mod 17)

9. Let p = 101. The goal of this problem will be to compute a such that 3a ≡ 17
(mod 101), using a simplified version of the index calculus attack.

(a) We will first compute x such that 3x ≡ 2 (mod 101). We do this by following
these steps:

• Compute 27 and reduce your answer modulo 101.

• Factor the new number that you obtained.

• This should give you an equation satisfied by x. Solve this equation.

(b) What is 17−1 (mod 101)? Compute this number and call it b.

(c) Use that 17b ≡ 1 (mod 101) to get a relationship between x from part a) and a
such that 3a ≡ 17 (mod 101). Using the value of x you computed in part (a),
solve this equation for a.

Extra problems for graduate credit:

1. (TW Coding Theory, Section 6.8, problem 19) Let N = pq be the product of two
distinct primes.



(a) Let k be a multiple of ϕ(N). Show that if gcd(a,N) = 1, then ak ≡ 1 (mod p)
and ak ≡ 1 (mod q).

(b) Suppose k is as in part (a), and let a be arbitrary now (so possibly gcd(a,N) 6= 1).
Show that ak+1 ≡ a (mod p) and ak+1 ≡ a (mod q).

(c) Let e and d be encryption and decryption exponents for RSA with modulus N .
Show that aed ≡ a (mod N) for all a. This shows that we do not need to assume
gcd(a,N) = 1 in order to use RSA.

2. (SRS Cryptography, Section 12.9 problem 10) Suppose that N = pq is a product of two
primes and gcd(a, pq) = 1.

(a) Show that if x2 ≡ a (mod N) has any solutions in Z/NZ, then it has exactly four
solutions.

(b) If, for some a ∈ Z/NZ, you know all four solutions, show that you can quickly
factor N .

3. (adapted from SRS Cryptography) Let p be a prime and let g ∈ (Z/pZ)×.

(a) Show that if g is a primitive root modulo p, then logg(ab) ≡ logg(a) + logg(b)
(mod p− 1).

(b) If g is not a primitive root, give a counterexample to part (a). Give a corrected
formula that is true.

(c) Again assume that g is a primitive root modulo p. Show that

i. logg(1) ≡ 0 (mod p− 1) and logg(g) ≡ 1 (mod p− 1).

ii. logg(a
−1) ≡ − logg(a) (mod p−1) and more generally for any integer logg(a

r) ≡
r logg(a) (mod p− 1).


