RSA

Modular Congruence

- In modular arithmetic, we choose a positive integer m and view all other integers as being equivalent to their unique representatives between 0 and $m-1$.
- Two integers are congruent modulo m if they both have the same remainder when divided by m.
- This is the same as saying that two integers a and b are congruent modulo m if and only if $a-b$ is divisible by m.
- We write $a \equiv b \bmod m$ to express a and b being congruent modulo m.
■ In math notation, $a \equiv b \bmod m \Longleftrightarrow m \mid(a-b)$.

Modular Congruence

■ In modular arithmetic, we choose a positive integer m and view all other integers as being equivalent to their unique representatives between 0 and $m-1$.

- Two integers are congruent modulo m if they both have the same remainder when divided by m.
- This is the same as saying that two integers a and b are congruent modulo m if and only if $a-b$ is divisible by m.
- We write $a \equiv b \bmod m$ to express a and b being congruent modulo m.
■ In math notation, $a \equiv b \bmod m \Longleftrightarrow m \mid(a-b)$.
- Write examples on the board, please.

Modular Arithmetic

- If $a_{1} \equiv a_{2} \bmod m$ and $b_{1} \equiv b_{2} \bmod m$, then $\left(a_{1}+a_{2}\right) \equiv\left(b_{1}+b_{2}\right) \bmod m$ and $a_{1} a_{2} \equiv b_{1} b_{2} \bmod m$.
- This allows us to compute exponents that could otherwise be too big. Look at the nice example on the board.

Inverses

■ Given a and m, there exists an integer b such that $a b \equiv 1 \bmod m$ if and only if $\operatorname{gcd}(a, m)=1$.
■ If $a b \equiv 1 \bmod m$, then we say that a and b are multiplicative inverses of each other mod m. (or just inverses).

- We can also say that a is invertible, or that a is a unit, if a has an inverse mod m.
- Examples

Inverses

■ Given a and m, there exists an integer b such that $a b \equiv 1 \bmod m$ if and only if $\operatorname{gcd}(a, m)=1$.

- If $a b \equiv 1 \bmod m$, then we say that a and b are multiplicative inverses of each other mod m. (or just inverses).
- We can also say that a is invertible, or that a is a unit, if a has an inverse mod m.
- Examples

■ $\mathbb{Z} / m \mathbb{Z}=\{0,1,2, \ldots, m-1\}$.

$$
\begin{aligned}
(\mathbb{Z} / m \mathbb{Z})^{\star} & =\{a \in \mathbb{Z} / m \mathbb{Z} \mid a \text { has an inverse }\} \\
& =\{a \in \mathbb{Z} / m \mathbb{Z} \mid \operatorname{gcd}(a, m)=1\}
\end{aligned}
$$

Euler's Function

- Two integers a and b are relatively prime if and only if $\operatorname{gcd}(a, b)=1$.
- The Euler Phi Function (or the Euler Totient Function) is defined as the number of positive integers less than m that are relatively prime to m. So this is the size of the set of units in $\mathbb{Z} / m \mathbb{Z}$. In math notation,

$$
\phi(m)=\left|(\mathbb{Z} / m \mathbb{Z})^{\star}\right|
$$

- Examples

Euler's Function

- Two integers a and b are relatively prime if and only if $\operatorname{gcd}(a, b)=1$.
- The Euler Phi Function (or the Euler Totient Function) is defined as the number of positive integers less than m that are relatively prime to m. So this is the size of the set of units in $\mathbb{Z} / m \mathbb{Z}$. In math notation,

$$
\phi(m)=\left|(\mathbb{Z} / m \mathbb{Z})^{\star}\right|
$$

- Examples
- If p is prime, then $\phi(p)=p-1$.
- If $N=p q$ where both p and q are prime, then $\phi(N)=(p-1)(q-1)$.

Euclid

You can use the Euclidean algorithm (google it or look in a textbook if you need) to find $\operatorname{gcd}(a, m)$ for two positive integers a and m. You can also use the extended Euclidean algorithm to obtain a linear combination: $a s+m t=\operatorname{gcd}(a, m)$ for some integers s and t.
Now suppose that $\operatorname{gcd}(a, m)=1$. Then we can find s and t such that $a s+m t=1$. Then $a s=1-m t$. So $a s \equiv 1 \bmod m$, and s is the inverse of $a \bmod m$.
To summarize: we can use the Euclidean algorithm to quickly find the gcd of a and m. If that gcd is 1 , then we can use the extended Euclidean algorithm to quickly find the multiplicative inverse of a $\bmod m$.

Euler's Theorem

If $\operatorname{gcd}(a, n)=1$, then $a^{\phi(n)} \equiv 1 \bmod n$.

Public Key Cryptography

■ Ask if they know what public key cryptography is.

Public Key Cryptography

■ Ask if they know what public key cryptography is.
■ Do a demonstration of public key cryptography.

RSA

- Suppose Bob wants to send a message to Alice. For simplicity, suppose the message is in the form of a positive integer m.
- Alice chooses two large prime numbers, p and q. She multiplies them to get $N=p \times q$ and she publishes N for Bob to see.
- Alice chooses a positive integer e that is relatively prime to $\phi(N)$ and also publishes it. The pair (e, N) is called Alice's public key.

RSA (continued)

- Alice finds the multiplicative inverse, d, of e modulo $\phi(N)$. This is called Alice's private key.
■ Bob computes $c \equiv m^{e} \bmod N$. This value c is the ciphertext he sends to Alice.

■ Alice computes $c^{d} \bmod N$. This is the original message m.

Proof that RSA Works

When Alice receives Bob's message, she computes

$$
\begin{aligned}
c^{d} \bmod N & \equiv\left(m^{e}\right)^{d} \bmod N \\
& \equiv m^{e d} \bmod N \\
& \equiv m^{1+k \phi(N)} \bmod N \\
& \equiv(m)\left(m^{\phi(N)}\right)^{k} \bmod N \\
& \equiv m * 1^{k} \bmod N \\
& =m
\end{aligned}
$$

The Security of RSA

- If Eve can find d, then she can decrypt any message Bob sends. Only e and N are published by Alice, so Eve has to try to recover d with just those two values.
- Knowing p and q would reveal d (since $e \times d \equiv 1 \bmod (p-1)(q-1))$.
- So Eve just needs to factor N into $p \times q$.

Chinese Remainder Theorem

Let $m_{1}, m_{2}, \ldots, m_{k}$ be a set of pairwise relatively prime positive integers (so $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ for all $\left.i \neq j\right)$. Then the set of simultaneous congruences

$$
\begin{aligned}
x & \equiv a_{1} \bmod m_{1} \\
x & \equiv a_{2} \bmod m_{2} \\
& \cdots \\
x & \equiv a_{k} \bmod m_{k}
\end{aligned}
$$

has a unique solution $\bmod m_{1} m_{2} \ldots m_{k}$.

