Name:
Problem 1: Let a, b and c be integers. Show that if $a \mid b$ and $b \mid c$, then $a \mid c$.
Solution: By definition, if $a \mid b$, there is an integer s with $b=a s$. Again by definition, if $b \mid c$, there is an integer t with $c=b t$. Substituting one equation into the other, we get

$$
c=b t=(a s) t=a(s t) .
$$

Since the product of two integers is an integer, st is an integer, and by definition $a \mid c$.

