Name:
Problem 1: Please give all solutions to the quadratic congruence

$$
x^{2} \equiv 1 \quad(\bmod 72)
$$

Solution: We have that $72=8 \cdot 9$, so we must solve

$$
x^{2} \equiv 1 \quad(\bmod 8) \quad \text { and } x^{2} \equiv 1 \quad(\bmod 9)
$$

These are both straightforward: $x^{2} \equiv 1(\bmod 8)$ has solutions $x \equiv 1,3,5,7(\bmod 8)$, and $x^{2} \equiv 1(\bmod 9)$ has solutions $x \equiv 1,8(\bmod 9)($ since 9 is a power of an odd prime, we know there are only two solutions).
Therefore all we must do is to form all eight pairs of solutions modulo 8 and modulo 9 to compute the eight solutions to $x^{2} \equiv 1(\bmod 72)$. We first compute what the form of the solution will be. Here we have that $m_{1}=8$ and $m_{2}=9$, so that $M_{1}=9$ and $x_{1} \equiv 9^{-1} \equiv 1^{-1} \equiv 1(\bmod 8)$, and $M_{2}=8$ and $x_{2} \equiv 8^{-1} \equiv(-1)^{-1} \equiv-1(\bmod 9)$. Therefore, the solution that correspond to the pair

$$
x \equiv a_{1} \quad(\bmod 8), \quad x \equiv a_{2} \quad(\bmod 9)
$$

is

$$
x \equiv 9 a_{1}-8 a_{2} \quad(\bmod 72) .
$$

It follows that the eight solutions are

$$
\begin{gathered}
x \equiv 9 \cdot 1-8 \cdot 1 \equiv 1 \quad(\bmod 72), \\
x \equiv 9 \cdot 1-8 \cdot 8 \equiv-55 \equiv 17 \quad(\bmod 72), \\
x \equiv 9 \cdot 3-8 \cdot 1 \equiv 19 \quad(\bmod 72), \\
x \equiv 9 \cdot 3-8 \cdot 8 \equiv-37 \equiv 35 \quad(\bmod 72), \\
x \equiv 9 \cdot 5-8 \cdot 1 \equiv 37 \quad(\bmod 72), \\
x \equiv 9 \cdot 5-8 \cdot 8 \equiv-19 \equiv 53 \quad(\bmod 72), \\
x \equiv 9 \cdot 7-8 \cdot 1 \equiv 55 \quad(\bmod 72), \\
x \equiv 9 \cdot 7-8 \cdot 8 \equiv-1 \equiv 71 \quad(\bmod 72) .
\end{gathered}
$$

