Name:
Problem 1: Please give all solutions to the quadratic congruence

$$
x^{2} \equiv 33 \quad(\bmod 64)
$$

Solution: We might notice that $33 \equiv 1(\bmod 32)$, and therefore the equation $x^{2} \equiv$ $33 \equiv 1(\bmod 32)$ has solution $x \equiv 1(\bmod 32)$.
To get the solutions to the equation $x^{2} \equiv 33(\bmod 64)$, we lift $x \equiv 1(\bmod 16)$ to a solution $\mathbb{Z} / 64 \mathbb{Z}$. The lifting equation is

$$
x_{1}=1+16 y_{0}
$$

and we wish to solve

$$
x_{1}^{2} \equiv 33 \quad(\bmod 64)
$$

Plugging the first equation into the second, we get

$$
\begin{aligned}
\left(1+16 y_{0}\right)^{2} & \equiv 33 \quad(\bmod 64) \\
1+32 y_{0}+16^{2} y_{0}^{2} & \equiv 33 \quad(\bmod 64) \\
32 y_{0} & \equiv 32 \quad(\bmod 64) \\
y_{0} & \equiv 1 \quad(\bmod 2) .
\end{aligned}
$$

Therefore we get a solution $x_{1} \equiv 1+16 \cdot 1 \equiv 17(\bmod 64)$. The other three solutions are $-x_{1} \equiv-17 \equiv 47(\bmod 64), x_{1}+32 \equiv 17+32 \equiv 49(\bmod 64)$ and $-\left(x_{1}+32\right) \equiv$ $-49 \equiv 15(\bmod 64)$.

