Name:
Problem 1: Please give all solutions to the quadratic congruence

$$
x^{2} \equiv 21 \quad(\bmod 25)
$$

Solution: We have that $(21,25)=1$ and $25=5^{2}$, so we can use our lifting technique. We first solve $x^{2} \equiv 21 \equiv 1(\bmod 5)$. This has solution $x_{0} \equiv-1 \equiv 4(\bmod 5)$.
We now lift this solution to $\mathbb{Z} / 25 \mathbb{Z}$. The lifting equation is

$$
x_{1}=4+5 y_{0}
$$

and we wish to solve the equation

$$
x_{1}^{2} \equiv 21 \quad(\bmod 25)
$$

Plugging the first equation into the second we get:

$$
\begin{array}{rlrl}
\left(4+5 y_{0}\right)^{2} & \equiv 21 & (\bmod 25) \\
16+40 y_{0}+25 y_{0}^{2} & \equiv 21 & (\bmod 25) \\
16+15 y_{0} & \equiv 21 & (\bmod 25) \\
15 y_{0} & \equiv 5 & (\bmod 25) \\
3 y_{0} & \equiv 1 & & (\bmod 5) \\
y_{0} & \equiv 2 \quad & (\bmod 5) .
\end{array}
$$

Therefore we get the solution $x_{1} \equiv 4+5 \cdot 2 \equiv 14(\bmod 25)$, and the other solution is $-x_{1} \equiv-14 \equiv 11(\bmod 25)$.

