Name:
Problem 1: Is 2 a primitive root modulo 11?

For full credit, justify your answer.
Solution: A primitive root modulo m is an integer a with $(a, m)=1$ such that the order of a is $\phi(m)$.
Here we have that $(2,11)=1$ and $\phi(11)=10$, so the question is simply whether or not the order of 2 modulo 11 is 10 or something smaller.
We note that to compute the order of a number a modulo m, it suffices to check if $a^{d} \equiv 1(\bmod m)$ for each divisor d of $\phi(m)$, starting with the smallest divisor. The first time we do get $a^{d} \equiv 1(\bmod m)$ is the order of a modulo m. (This is because the order of a number will always divide $\phi(m)$, so we can cut down on our computations a little bit.)
The divisors of $\phi(11)=10$ are $1,2,5$ and 10 . We know that $2^{1} \not \equiv 1(\bmod 11)$, so 2 does not have order 1 .
We have that $2^{2} \equiv 4 \not \equiv 1(\bmod 11)$, so 2 does not have order 2 modulo 11 .
We also have

$$
\begin{aligned}
2^{5} & \equiv 2^{2} \cdot 2^{2} \cdot 2 \quad(\bmod 11) \\
& \equiv 4 \cdot 4 \cdot 2 \quad(\bmod 11) \\
& \equiv 16 \cdot 2 \quad(\bmod 11) \\
& \equiv 5 \cdot 2 \quad(\bmod 11) \\
& \equiv 10 \not \equiv 1 \quad(\bmod 11)
\end{aligned}
$$

Therefore 2 does not have order 5 modulo 11 .
It follows that 2 must have order 10 modulo 11 (and we can check this: $2^{10} \equiv\left(2^{5}\right)^{2} \equiv$ $\left.10^{2} \equiv(-1)^{2} \equiv 1(\bmod 11)\right)$, and therefore, yes, 2 is a primitive root modulo 11 .

