Name:
Problem 1: Let x be an integer such that

$$
x \equiv 1 \quad(\bmod 3) .
$$

Please list all possible congruence classes that x can belong to modulo 9.
Solution: If $x \equiv 1(\bmod 3)$, then $x=1+3 q$ for some integer q, by Theorem 1 of Section 4.
We note that q itself can be of one of three forms: $q=3 m$ for m an integer, $q=1+3 m$ for m an integer and $q=2+3 m$ for m an integer, by the Division Algorithm.
If $q=3 m$, then

$$
x=1+3(3 m)=1+9 m,
$$

and therefore $x \equiv 1(\bmod 9)$.
If $q=1+3 m$, then

$$
x=1+3(1+3 m)=1+3+9 m=4+9 m,
$$

and therefore $x \equiv 4(\bmod 9)$.
Finally, if $q=2+3 m$, then

$$
x=1+3(2+3 m)=1+6+9 m=7+9 m,
$$

and therefore $x \equiv 7(\bmod 9)$.
Therefore, if $x \equiv 1(\bmod 3)$, then $x \equiv 1,4$ or $7(\bmod 9)$.

