Name:
Problem 1: How many solutions does the equation

$$
12 x \equiv 8 \quad(\bmod 16)
$$

have?
For full credit you must justify your answer.
Solution: This is an equation of the form $a x \equiv(\bmod m)$, with $a=12, b=8$ and $m=16$. We note that $(12,16)=4$ and $4 \mid 8$. Therefore by Lemma 3 , this equation has 4 solutions.
(Note that if $(12,16)$ did not divide b, then there would be no solution.)
We will even solve these equations: First we divide all the way through by 4 to get the equation

$$
3 x \equiv 2 \quad(\bmod 4)
$$

Now 3 is a unit modulo 4 , with inverse 3 (because $3 \cdot 3=9 \equiv 1(\bmod 4)$). Therefore multiplying both sides by 3 , we get

$$
x \equiv 6 \equiv 2 \quad(\bmod 4)
$$

Now we lift $x \equiv 2(\bmod 4)$ to all of its solutions modulo 16. They are

$$
x=2+4 q,
$$

for $q=0,1,2,3$. This gives

$$
x \equiv 2,6,10,14 \quad(\bmod 16) .
$$

Note that if we continue with $q=4,5,6, \ldots$, all we do is get the same solutions again, so there are no more.

