Name:
Problem 1: Please compute 8^{-1} modulo 59.

In other words, the class $[8]_{59}$ is a unit. Please compute its inverse u, which is the class $[u]_{59}$ such that

$$
[8]_{59} \times[u]_{59}=[1]_{59} .
$$

Solution: We can solve this problem by inspection, by trying to find another integer u such that $8 u \equiv 1(\bmod 59)$. Sometimes that is easy and quick, but here I don't see anything immediately, so I will do the process.
We begin with the Euclidean algorithm:

$$
\begin{aligned}
59 & =8 \cdot 7+3 \\
8 & =3 \cdot 2+2 \\
3 & =2+1 .
\end{aligned}
$$

Then we back-solve to solve the equation $8 x+59 y=1$. The solution x is the inverse we seek:

$$
\begin{aligned}
1 & =3-2 \\
& =3-(8-2 \cdot 3) \\
& =3-8+2 \cdot 3 \\
& =3 \cdot 3-8 \\
& =3(59-7 \cdot 8)-8 \\
& =3 \cdot 59-21 \cdot 8-8 \\
& =3 \cdot 59-22 \cdot 8 .
\end{aligned}
$$

Therefore, from the equation $(-22) \cdot 8-1=(-3) \cdot 59$, we get that 59 divides $(-22) \cdot 8-1$ or $(-22) \cdot 8 \equiv 1(\bmod 59)$.
Therefore $8^{-1} \equiv-22(\bmod 59)$, or if we prefer a least residue, $8^{-1} \equiv 37(\bmod 59)$.

