Name:
Problem 1: Let a, b, c and m be integers, with $m>0$.
Show that if $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$, then $a \equiv c(\bmod m)$.
Solution: By Theorem 1 of Section 4 in the book, because $a \equiv b(\bmod m)$ and $b \equiv c$ $(\bmod m)$, this means that there are integers k_{1} and k_{2} such that $a=b+k_{1} m$ and $b=c+k_{2} m$.
Substituting, we get

$$
a=\left(c+k_{2} m\right)+k_{1} m=c+\left(k_{1}+k_{2}\right) m,
$$

where here we used associativity and distributivity.
Since $k_{1}+k_{2}$ is also an integer, Theorem 1 allows us to conclude that $a \equiv c(\bmod m)$.

