Math 255 - Spring 2018

Solving $x^{2} \equiv a(\bmod m)$

Contents

1 Lifting 1
2 Solving $x^{2} \equiv a\left(\bmod p^{k}\right)$ for p odd $\quad 1$
3 Solving $x^{2} \equiv a\left(\bmod 2^{k}\right) \quad 4$
4 Solving $x^{2} \equiv a(\bmod m)$ for general $m \quad 8$

1 Lifting

We begin by recalling the definition of a lift of $a(\bmod d)$, since we will need it throughout.
Definition 1.1. Let n and d be two integers such that d divides n. Then b modulo n is a lift of a modulo d if

$$
a \equiv b \quad(\bmod d) .
$$

A fixed congruence class a modulo d has $\frac{n}{d}$ different lifts modulo n, and they are given by

$$
x \equiv a+d r \quad(\bmod n), \quad r=0,1,2, \ldots, \frac{n}{d}-1
$$

Example 1.2. Let $n=54$ and $d=6$. Then $x \equiv 2(\bmod 6)($ so here $a=2)$ has $\frac{54}{6}=9$ lifts modulo 54 , and they are

$$
x \equiv 2,8,14,20,26,32,38,44,50 \quad(\bmod 54) .
$$

Note that all of these integers are different modulo 54, but they are all the same modulo 6 .
2 Solving $x^{2} \equiv a\left(\bmod p^{k}\right)$ for p odd
We begin with a proposition. This is the only time we will consider the case of $(a, p)>1$:
Proposition 2.1. The equation

$$
x^{2} \equiv 0 \quad(\bmod p),
$$

where p is any prime, has the unique solution $x \equiv 0(\bmod p)$.
Proof. The only zero divisor in the ring $\mathbb{Z} / p \mathbb{Z}$ is 0 . Therefore, if a product is 0 , one of the factors must be 0 , from which it follows that $x \equiv 0(\bmod p)$.

Our main result is the following:

Theorem 2.2. Let p be an odd prime and $a \in \mathbb{Z}$ with $(a, p)=1$. The equation

$$
x^{2} \equiv a \quad\left(\bmod p^{k}\right)
$$

either

- has no solution if $\left(\frac{a}{p}\right)=-1$; or
- has 2 solutions x_{1} and $-x_{1}$ if $\left(\frac{a}{p}\right)=1$.

Proof. If $x^{2} \equiv a\left(\bmod p^{k}\right)$ has a solution, say we call it b, then b is also a solution to $x^{2} \equiv a$ $(\bmod p)$, by simply "reducing more." (Alternatively we can argue that if p^{k} divides $b^{2}-a$, then p divides $b^{2}-a$ as well.) Therefore if $x^{2} \equiv a\left(\bmod p^{k}\right)$ has a solution, then so does $x^{2} \equiv a(\bmod p)$. The contrapositive of this statement is that if $x^{2} \equiv a(\bmod p)$ does not have a solution, then $x^{2} \equiv a\left(\bmod p^{k}\right)$ does not have a solution. This takes care of almost all of the theorem, except the claim that there are exactly two solutions if there is a solution.

Suppose now that $x^{2} \equiv a\left(\bmod p^{k}\right)$ has a solution, say $x \equiv x_{1}\left(\bmod p^{k}\right)$. We can easily show that $-x_{1}$ is also a solution of this equation, since $\left(-x_{1}\right)^{2} \equiv x_{1}^{2} \equiv a\left(\bmod p^{k}\right)$. Therefore it remains to show that this is the only other solution of this equation when there is a solution. We note, as we will need it later, that if $(a, p)=1$, then also $\left(x_{1}, p\right)=1$, because if that were not the case then certainly also (a, p) would be greater than 1 , since $x_{1}^{2} \equiv a(\bmod p)$.

Let b be any other solution of the equation $x^{2} \equiv a\left(\bmod p^{k}\right)$. Then we have that

$$
x_{1}^{2}-b^{2} \equiv\left(x_{1}-b\right)\left(x_{1}+b\right) \equiv 0 \quad\left(\bmod p^{k}\right)
$$

Since p^{k} is not a prime, we cannot conclude yet that p^{k} divides $x_{1}-b$ or p^{k} divides $x_{1}+b$; we must show it. Assume instead that there is ℓ such that p^{ℓ} divides $x_{1}-b$ and $p^{k-\ell}$ divides $x_{1}+b$, so that p^{k} divides $\left(x_{1}-b\right)\left(x_{1}+b\right)$. We'll write $x_{1}-b=s p^{\ell}$ and $x_{1}+b=t p^{k-\ell}$, for s and t integers. From this it follows, with some arithmetic manipulations, that

$$
2 b=t p^{k-\ell}-s p^{\ell}
$$

Suppose that $0<\ell<k$, so that both ℓ and $k-\ell$ are positive. In that case, p divides the right hand side of the equation above. However, we have that $(2, p)=1$, since p is odd and $(b, p)=1$ since b is a solution of $x^{2} \equiv a(\bmod p)$, with $(a, p)=1$. Therefore $(2 b, p)=1$, and we have a contradiction.

It must thus be the case that either $\ell=0$, in which case p^{k} divides $x_{1}+b$, which we can write as $x_{1}+b \equiv 0\left(\bmod p^{k}\right)$, or $b \equiv-x_{1}\left(\bmod p^{k}\right)$. Otherwise, $\ell=k$, in which case p^{k} divides $x_{1}-b$, and it follows that $b \equiv x_{1}\left(\bmod p^{k}\right)$. This proves that the only possibilities for b a solution of $x^{2} \equiv a\left(\bmod p^{k}\right)$ are for $b \equiv \pm x_{1}\left(\bmod p^{k}\right)$.

We now turn our attention to finding the two solutions when they exist. The idea behind solving the equation is similar to induction:

1. We first solve the equation $x^{2} \equiv a(\bmod p)$ (the "base case")
2. Given a solution to $x^{2} \equiv a\left(\bmod p^{j}\right)$, we compute a solution to $x^{2} \equiv a\left(\bmod p^{j+1}\right)$ (the "induction step"). We repeat this step, lifting our solution from modulo p to modulo p^{2} to modulo p^{3}, until we get to the p^{k} that is our target.

The "base case" in our class will always be easy, either because p is small or because the equation is $x^{2} \equiv 1,4,9,16 \ldots(\bmod p)$ (which have a solution in the integers which also works modulo any prime p). We focus here on the lifting (or "induction") step.

Assume that we have a solution x_{0} such that $x_{0}^{2} \equiv a\left(\bmod p^{j}\right)$. Then we look for a lift of $x_{0}\left(\bmod p^{j}\right)$ to $x_{1}\left(\bmod p^{j+1}\right)$ that satisfies $x_{1}^{2} \equiv a\left(\bmod p^{j+1}\right)$. Concretely, this gives us the following two equations:

1. The "lifting equation"

$$
x_{1}=x_{0}+p^{j} y_{0}
$$

which ensures that $x_{1}\left(\bmod p^{j+1}\right)$ is a lift of $x_{0}\left(\bmod p^{j}\right)$,
2. and the equation

$$
x_{1}^{2} \equiv a \quad\left(\bmod p^{j+1}\right),
$$

which is the equation we are trying to solve.
Plugging the first equation into the second we get

$$
\begin{aligned}
a & \equiv\left(x_{0}+p^{j} y_{0}\right)^{2} \quad\left(\bmod p^{j+1}\right) \\
& \equiv x_{0}^{2}+2 x_{0} p^{j} y_{0}+p^{2 j} y_{0}^{2} \quad\left(\bmod p^{j+1}\right) \\
& \equiv x_{0}^{2}+2 x_{0} p^{j} y_{0} \quad\left(\bmod p^{j+1}\right)
\end{aligned}
$$

Recall that our unknown here is y_{0}. This is a linear equation in y_{0}. Furthermore, this equation can be shown to always have a unique solution $y_{0}(\bmod p)$: Indeed we have

$$
2 x_{0} p^{j} y_{0} \equiv a-x_{0}^{2} \quad\left(\bmod p^{j+1}\right)
$$

Since $x_{0}^{2} \equiv a\left(\bmod p^{j}\right), a-x_{0}^{2}$ is divisible by p^{j} (this is, after all, the definition of what it means to be congruent). We also have that $\left(2 x_{0} p^{j}, p^{j+1}\right)=p^{j}$, since $\left(2 x_{0}, p\right)=1$ (p is odd, and x_{0} cannot be divisible by p and be a solution to $x^{2} \equiv a\left(\bmod p^{j}\right)$ if $\left.\operatorname{gcd}(a, p)=1\right)$. Therefore we can divide all the way through by p^{j} and find the unique solution to

$$
2 x_{0} y_{0} \equiv \frac{a-x_{0}^{2}}{p^{j}} \quad(\bmod p)
$$

by multiplying both sides of the equation by $\left(2 x_{0}\right)^{-1}(\bmod p)\left(\right.$ which exists since $\left(2 x_{0}, p\right)=1$, as argued above).
$3 \quad$ Solving $x^{2} \equiv a\left(\bmod 2^{k}\right)$
We note that Proposition 2.1 still applies. Since $\operatorname{gcd}(a, 2)=1$ implies that a is odd, we now restrict to this case. Our main result when $p=2$ is the following:

Theorem 3.1. Let a be odd. Then we have the following:

1. The equation

$$
x^{2} \equiv a \quad(\bmod 2)
$$

has the unique solution $x \equiv 1(\bmod 2)$.
2. The equation

$$
x^{2} \equiv a \quad(\bmod 4)
$$

either

- has no solution if $a \equiv 3(\bmod 4)$; or
- has two solutions $x \equiv 1,3(\bmod 4)$ if $a \equiv 1(\bmod 4)$.

3. When $k \geq 3$, the equation

$$
x^{2} \equiv a \quad\left(\bmod 2^{k}\right)
$$

either

- has no solution if $a \not \equiv 1(\bmod 8)$; or
- has four solutions $x_{1},-x_{1}, x_{1}+2^{k-1},-\left(x_{1}+2^{k-1}\right)$ if $a \equiv 1(\bmod 8)$.

We omit the proof of this theorem for now; it is similar to the proof of Theorem 2.2, except for a small technicality which gives 4 solutions instead of 2 .

Since the cases of $k=1$ and $k=2$ are completely covered by the Theorem, we focus on the case of $k \geq 3$ and turn our attention to giving the four solutions in that case. The idea is identical to the one we used for p odd, except that we must modify the lifting step slightly. The base case is also easier.

1. We first solve the equation $x^{2} \equiv a(\bmod 8)$. Note that if there is a solution, then $a \equiv 1$ $(\bmod 8)$, and therefore the "base case" is always solving $x^{2} \equiv 1(\bmod 8)$. This has solutions $x \equiv 1,3,5,7(\bmod 8)$ and we can choose to lift any of those four solutions.
2. Given a solution $x^{2} \equiv a\left(\bmod 2^{j}\right)$, we compute a solution to $x^{2} \equiv a\left(\bmod 2^{j+1}\right)$ (the "induction step"). We repeat this step, lifting our solution from modulo 8 to modulo 16 to modulo 32 , until we get to the 2^{k} that is our target.

We now explain the lifting step or "induction" step.
Assume that we have a solution x_{0} such that $x_{0}^{2} \equiv a\left(\bmod 2^{j}\right)$. Then we look for a lift of $x_{0}\left(\bmod 2^{j-1}\right)$ to $x_{1}\left(\bmod p^{j+1}\right)$ that satisfies $x_{1}^{2} \equiv a\left(\bmod p^{j+1}\right)$. Notice the small "backwards dance" that we must do for $p=2$: We have a solution modulo 2^{j}, but when
lifting we treat it as if it is a solution modulo 2^{j-1} (we "demote" it to $\mathbb{Z} / 2^{j-1} \mathbb{Z}$) before lifting straight to $\mathbb{Z} / 2^{j+1} \mathbb{Z}$. The reason we do this is the following: When we solve the equations as above, if we had

$$
x_{1}=x_{0}+2^{j} y_{0},
$$

and

$$
x_{1}^{2} \equiv a \quad\left(\bmod 2^{j+1}\right)
$$

which are analogous to the equation we have when p is odd, then when we square, here is what happens:

$$
\begin{aligned}
a & \equiv\left(x_{0}+2^{j} y_{0}\right)^{2} \quad\left(\bmod 2^{j+1}\right) \\
& \equiv x_{0}^{2}+2 x_{0} 2^{j} y_{0}+2^{2 j} y_{0}^{2} \quad\left(\bmod 2^{j+1}\right) \\
& \equiv x_{0}^{2}+2^{j+1} x_{0} y_{0} \quad\left(\bmod 2^{j+1}\right) \\
& \equiv x_{0}^{2} \quad\left(\bmod 2^{j+1}\right)
\end{aligned}
$$

The variable y_{0} has completely disappeared from the equation so we cannot solve for it! (There is also a more serious problem which we discuss in the Remarks below.)

Instead, this is what we do: We begin with the following two equations:

1. The "lifting equation"

$$
x_{1}=x_{0}+2^{j-1} y_{0},
$$

which ensures that $x_{1}\left(\bmod 2^{j+1}\right)$ is a lift of $x_{0}\left(\bmod 2^{j-1}\right)$,
2. and the equation

$$
x_{1}^{2} \equiv a \quad\left(\bmod 2^{j+1}\right),
$$

which is the equation we are trying to solve.
Now we proceed as before: We plug the first equation into the second to get

$$
\begin{aligned}
a & \equiv\left(x_{0}+2^{j-1} y_{0}\right)^{2} \quad\left(\bmod 2^{j+1}\right) \\
& \equiv x_{0}^{2}+2 x_{0} 2^{j-1} y_{0}+2^{2 j-2} y_{0}^{2} \quad\left(\bmod 2^{j+1}\right) \\
& \equiv x_{0}^{2}+2^{j} x_{0} y_{0} \quad\left(\bmod 2^{j+1}\right)
\end{aligned}
$$

where now the last term disappears since $2^{2 j-2} \equiv 0\left(\bmod 2^{j+1}\right)$ because $2 j-2 \geq j+1$ if $j \geq 3$ (which we have assumed to begin with since $k \geq 3$).

Again our unknown here is y_{0} and this is a linear equation in y_{0}. Furthermore, this equation can be shown to always have a unique solution $y_{0}(\bmod 2)$: Indeed we have

$$
2^{j} x_{0} y_{0} \equiv a-x_{0}^{2} \quad\left(\bmod 2^{j+1}\right)
$$

Since $x_{0}^{2} \equiv a\left(\bmod 2^{j}\right)$, again $a-x_{0}^{2}$ is divisible by 2^{j}. We also have that $\operatorname{gcd}\left(2^{j} x_{0}, 2^{j+1}\right)=2^{j}$, since $\operatorname{gcd}\left(x_{0}, 2\right)=1\left(x_{0}\right.$ cannot be divisible by 2 and be a solution to $x^{2} \equiv a\left(\bmod 2^{j}\right)$ if
$\operatorname{gcd}(a, 2)=1)$. Therefore we can divide all the way through by 2^{j} and find the unique solution to

$$
x_{0} y_{0} \equiv y_{0} \equiv \frac{a-x_{0}^{2}}{2^{j}} \quad(\bmod 2),
$$

where here we use that $x_{0} \equiv 1(\bmod 2)$ since $\operatorname{gcd}\left(x_{0}, 2\right)=1$ so x_{0} is odd.
Remark 3.2. We note that a quite important point has gotten swept under the rug: If

$$
x_{1}=x_{0}+2^{j-1} y_{0},
$$

then $0 \leq y_{0}<4$ all give different lifts of $x_{0}\left(\bmod 2^{j-1}\right)$ to $x_{1}\left(\bmod 2^{j+1}\right)$. However, we have found $y_{0}(\bmod 2)$. Technically, we should find the two lifts of $y_{0}(\bmod 2)$ to $y_{0}(\bmod 4)$ to obtain two lifts of $x_{0}\left(\bmod 2^{j-1}\right)$ to $x_{1}\left(\bmod 2^{j+1}\right)$. However, for our procedure we only need one lift, and we find all solutions at the top level, once we have one solution to $x^{2} \equiv a$ $\left(\bmod 2^{k}\right)$.

However, this is the reason why there are four solutions and why x_{1} and $x_{1}+2^{k-1}$ are both solutions. These are both lifts of $x_{1}\left(\bmod 2^{k-2}\right)$ to $x_{1}\left(\bmod 2^{k}\right)$ that satisfy $x^{2} \equiv a$ $\left(\bmod 2^{k}\right)$. We explain this with an example:

Example 3.3. Let us solve $x^{2} \equiv 9(\bmod 32)$. We begin by solving $x^{2} \equiv 9(\bmod 16)$, which has solutions $x \equiv 3,5,11,13(\bmod 16)$ (we can find these by solving $x^{2} \equiv 9(\bmod 8)$ and lifting, or by noticing that $x_{1}=3$ is a solution and using Theorem 3.1). We now lift all of the solutions to see what we obtain:

First we lift $x_{0}=3$: We "demote" it to $x_{0}=3+8 y_{0}$, then square:

$$
\begin{aligned}
9 & \equiv\left(3+8 y_{0}\right)^{2} \quad(\bmod 32) \\
& \equiv 9+48 y_{0}+64 y_{0}^{2} \quad(\bmod 32) \\
& \equiv 9+16 y_{0} \quad(\bmod 32) .
\end{aligned}
$$

We note that the equation

$$
9 \equiv 9+16 y_{0} \quad(\bmod 32)
$$

has the unique solution $y_{0} \equiv 0(\bmod 2)$, but two solutions $y_{0} \equiv 0,2(\bmod 4)$ (and 16 solutions in $\mathbb{Z} / 32 \mathbb{Z}$ where this equation really lives!). This gives two different lifts of x_{0} :

$$
x_{1} \equiv 3 \quad(\bmod 32) \quad \text { and } \quad x_{1} \equiv 19 \quad(\bmod 32)
$$

of $x_{0} \equiv 3(\bmod 8)$. We see that they are exactly of the form x_{1} and $x_{1}+16$, as predicted by the theorem.

Now let us see what happens when we lift $x_{0}=5$. We "demote" to $x_{0}=5+8 y_{0}$ then square:

$$
\begin{aligned}
9 & \equiv\left(5+8 y_{0}\right)^{2} \quad(\bmod 32) \\
& \equiv 25+80 y_{0}+64 y_{0}^{2} \quad(\bmod 32) \\
& \equiv 25+16 y_{0} \quad(\bmod 32) .
\end{aligned}
$$

We note that the equation

$$
9 \equiv 25+16 y_{0} \quad(\bmod 32)
$$

has the unique solution $y_{0} \equiv 1(\bmod 2)$, but two solutions $y_{0} \equiv 1,3(\bmod 4)$. This gives two different lifts of x_{0} :

$$
x_{1} \equiv 13 \quad(\bmod 32) \quad \text { and } \quad x_{1} \equiv 29 \quad(\bmod 32)
$$

of $x_{0} \equiv 5(\bmod 8)$. Again these are of the form x_{1} and $x_{1}+16$.
Finally, let us lift $x_{0}=11$: We "demote" it to $x_{0}=11+8 y_{0}$, then square:

$$
\begin{aligned}
9 & \equiv\left(11+8 y_{0}\right)^{2} \quad(\bmod 32) \\
& \equiv 121+176 y_{0}+64 y_{0}^{2} \quad(\bmod 32) \\
& \equiv 25+16 y_{0} \quad(\bmod 32)
\end{aligned}
$$

This is the same equation we obtained when we were lifting $x_{0}=5$, and it has solutions $y_{0} \equiv 1,3(\bmod 4)$. This gives us the two lifts of x_{0} :

$$
x_{1} \equiv 19 \quad(\bmod 32) \quad \text { and } \quad x_{1} \equiv 3 \quad(\bmod 32) .
$$

We see that we obtained the same solutions as when we lifted $x_{0}=3$, which makes sense since $3 \equiv 11(\bmod 8)$, so we were actually doing the same lift.

Similarly, if we were to lift $x_{0}=13$, we would get the solutions $x_{1} \equiv 13(\bmod 32)$ and $x_{1} \equiv 29(\bmod 32)$ again since $13 \equiv 5(\bmod 8)$. This shows how each of four solutions can give two lifts that are solutions, but we still have only four solutions in total: There are two pairs of solutions that each give the same two lifts. If we chose $x_{0}(\bmod 16)$ and $-x_{0}$ (mod 16) two solutions of $x^{2} \equiv 9(\bmod 16)$ and computed their four lifts (two lifts each) we would get all four solutions to $x^{2} \equiv 9(\bmod 32)$.

Remark 3.4. We say here one more thing about the "demotion" of the solution modulo 2^{j} to a solution modulo 2^{j-1}. Looking at Example 3.3, we see that starting with the solution $x_{0} \equiv 3(\bmod 16)$, we obtained the two solutions $x_{1} \equiv 3(\bmod 32)$ and $x_{1} \equiv 19(\bmod 32)$. These are both lifts of $3(\bmod 16)$. However, starting with the solution $x \equiv 5(\bmod 16)$, we obtained the two solutions $x_{1} \equiv 13(\bmod 32)$ and $x_{1} \equiv 29(\bmod 32)$. These are not lifts of $5(\bmod 16)$ (but they are lifts of $5(\bmod 8)$, of course). In fact, all of the solutions of $x^{2} \equiv 9$ $(\bmod 32)$ are lifts of $3(\bmod 16)$ and $13(\bmod 16)$, and none are lifts of $5(\bmod 16)$ or 11 $(\bmod 16)$. However, we have that $3 \equiv 11(\bmod 8)$ and $13 \equiv 5(\bmod 8)$, so by demoting down to $(\bmod 8)$, we ensure that we can now lift all of the solutions. This is good because before we solve the equation we cannot know which solutions $(\bmod 16)$ lift to $(\bmod 32)$.

This is why, incidentally, we cannot lift directly from a solution to $x^{2} \equiv 9(\bmod 8)$ to a solution to $x^{2} \equiv 9(\bmod 32)$. If I choose x_{0} a solution of $x^{2} \equiv 9(\bmod 8)$, say for example $x_{0} \equiv 1(\bmod 8)$, if I am unlucky x_{0} might not be a solution of $x^{2} \equiv 9(\bmod 16)$ and therefore it will certainly not lift to a solution of $x^{2} \equiv 9(\bmod 32)$. To avoid this situation, I start by choosing a solution x_{0} to $x^{2} \equiv 9(\bmod 16)$, then I demote it down to a solution of $x^{2} \equiv 9$
(mod 8) but now since I know that I can lift to a solution to $x^{2} \equiv 9(\bmod 16)$, I know that I will not be unlucky and I can also lift to a solution to $x^{2} \equiv 9(\bmod 32)$.

To be explicit:

$$
x^{2} \equiv 9 \quad(\bmod 8)
$$

has the four solutions $x \equiv 1,3,5,7(\bmod 8)$. Of these, only two lift to solutions to

$$
x^{2} \equiv 9 \quad(\bmod 16),
$$

namely $x \equiv 3(\bmod 8)$ and $x \equiv 5(\bmod 8)$ lift to $x \equiv 3,11(\bmod 16)$ and $x \equiv 5,13(\bmod 16)$ respectively.

Then the same thing happens at the next step: Of the four solutions $x \equiv 3,5,11,13$ $(\bmod 16)$ of the equation

$$
x^{2} \equiv 9 \quad(\bmod 16),
$$

only $x \equiv 3(\bmod 16)$ and $x \equiv 13(\bmod 16)$ actually lift to solutions to

$$
x^{2} \equiv 9 \quad(\bmod 32)
$$

which has solutions $x \equiv 3,13,19,23(\bmod 32)$.
The reason things are so messed up, and different from the case of p odd, where every solution modulo p^{j} lifts to a solution modulo p^{j+1}, is because the derivative of x^{2} is $2 x$ which is identically zero modulo 2 . The deeper reason why this matters involves studying p-adic integers and Hensel's Lemma, which tells you exactly when solutions modulo p^{j} to any equation lift uniquely to a solution modulo p^{j+1}.

4 Solving $x^{2} \equiv a(\bmod m)$ for general m

To do this we use the Chinese Remainder Theorem. Let $m=p_{1}^{e_{1}} \ldots p_{k}^{e_{k}}$. Suppose that we have a number x such that

$$
x^{2} \equiv a \quad\left(\bmod p_{i}^{e_{i}}\right)
$$

for each prime power factor $p_{i}^{e_{i}}$ of m. Then by changing variables to $y=x^{2}$, we have that

$$
y \equiv a \quad\left(\bmod p_{i}^{e_{i}}\right)
$$

and therefore by the Chinese Remainder Theorem

$$
y \equiv a \quad(\bmod m)
$$

or $x^{2} \equiv a(\bmod m)$.
Now at the same time, suppose that we have a k-tuple $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ such that for each i

$$
a_{i}^{2} \equiv a \quad\left(\bmod p_{i}^{e_{i}}\right),
$$

then there is a unique congruence class $x(\bmod m)$ such that

$$
x \equiv a_{i} \quad\left(\bmod p_{i}^{e_{i}}\right) .
$$

This explains why we may solve the equation $x^{2} \equiv a(\bmod m)$ "prime power by prime power."

Example 4.1. Let us solve the equation

$$
x^{2} \equiv 1 \quad(\bmod 72)
$$

Since $72=2^{3} \cdot 3^{3}$, we must solve

$$
x^{2} \equiv 1 \quad(\bmod 8) \quad \text { and } \quad x^{2} \equiv 1 \quad(\bmod 9)
$$

In general, we would need to use the techniques of Sections 2 and 3, since these are equations of the form $x^{2} \equiv a\left(\bmod p^{k}\right)$. However, these equations are particular simple so we are not required to do applying the lifting technique.

The equation $x^{2} \equiv 1(\bmod 8)$ has solutions $x \equiv 1,3,5,7(\bmod 8)$, as we know.
The equation $x^{2} \equiv 1(\bmod 9)$ has one solution $x_{1} \equiv 1(\bmod 9)$. By Theorem 2.2, this equation has two solutions and the other solution is $-x_{1} \equiv-1 \equiv 8(\bmod 9)$.

Therefore, for any pair $\left(a_{1}, a_{2}\right)$ such that $a_{1}^{2} \equiv 1(\bmod 8)$ and $a_{2}^{2} \equiv 1(\bmod 9)$, we get one solution to $x^{2} \equiv 1(\bmod 72)$. There are 8 such pairs:

$$
(1,1), \quad(1,8), \quad(3,1), \quad(3,8), \quad(5,1), \quad(5,8), \quad(7,1), \quad \text { and } \quad(7,8)
$$

Each pair gives a solution in the following way. In the notation of the Chinese Remainder Theorem, we have $a_{1}=5, M_{1}=9$ and $x_{1}=1$ and $a_{2}=1, M_{2}=8$ and $x_{2}=-1$.

Suppose we take the pair $(5,1)$, this stands for the Chinese Remainder Theorem problem

$$
x \equiv 5 \quad(\bmod 8), \quad x \equiv 1 \quad(\bmod 9) .
$$

Therefore we get the solution

$$
x \equiv 5 \cdot 9 \cdot 1+1 \cdot 8 \cdot(-1) \equiv 37 \quad(\bmod 72)
$$

If we take the pair $(7,1)$, this is the pair of equations

$$
x \equiv 7 \quad(\bmod 8), \quad x \equiv 1 \quad(\bmod 9)
$$

Therefore we get the solution

$$
x \equiv 7 \cdot 9 \cdot 1+1 \cdot 8 \cdot(-1) \equiv 55 \quad(\bmod 72)
$$

In this manner we can get the 8 solutions $x \equiv 1,17,19,35,37,53,55,71(\bmod 72)$ quite quickly.

