
Math 255 – Spring 2018
Solving x2 ≡ a (mod m)
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1 Lifting

We begin by recalling the definition of a lift of a (mod d), since we will need it throughout.

Definition 1.1. Let n and d be two integers such that d divides n. Then b modulo n is a
lift of a modulo d if

a ≡ b (mod d).

A fixed congruence class a modulo d has n
d

different lifts modulo n, and they are given by

x ≡ a + dr (mod n), r = 0, 1, 2, . . . ,
n

d
− 1

Example 1.2. Let n = 54 and d = 6. Then x ≡ 2 (mod 6) (so here a = 2) has 54
6

= 9 lifts
modulo 54, and they are

x ≡ 2, 8, 14, 20, 26, 32, 38, 44, 50 (mod 54).

Note that all of these integers are different modulo 54, but they are all the same modulo 6.

2 Solving x2 ≡ a (mod pk) for p odd

We begin with a proposition. This is the only time we will consider the case of (a, p) > 1:

Proposition 2.1. The equation
x2 ≡ 0 (mod p),

where p is any prime, has the unique solution x ≡ 0 (mod p).

Proof. The only zero divisor in the ring Z/pZ is 0. Therefore, if a product is 0, one of the
factors must be 0, from which it follows that x ≡ 0 (mod p).

Our main result is the following:
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Theorem 2.2. Let p be an odd prime and a ∈ Z with (a, p) = 1. The equation

x2 ≡ a (mod pk)

either

• has no solution if
(

a
p

)
= −1; or

• has 2 solutions x1 and −x1 if
(

a
p

)
= 1.

Proof. If x2 ≡ a (mod pk) has a solution, say we call it b, then b is also a solution to x2 ≡ a
(mod p), by simply “reducing more.” (Alternatively we can argue that if pk divides b2 − a,
then p divides b2 − a as well.) Therefore if x2 ≡ a (mod pk) has a solution, then so does
x2 ≡ a (mod p). The contrapositive of this statement is that if x2 ≡ a (mod p) does not
have a solution, then x2 ≡ a (mod pk) does not have a solution. This takes care of almost
all of the theorem, except the claim that there are exactly two solutions if there is a solution.

Suppose now that x2 ≡ a (mod pk) has a solution, say x ≡ x1 (mod pk). We can easily
show that −x1 is also a solution of this equation, since (−x1)

2 ≡ x2
1 ≡ a (mod pk). Therefore

it remains to show that this is the only other solution of this equation when there is a solution.
We note, as we will need it later, that if (a, p) = 1, then also (x1, p) = 1, because if that
were not the case then certainly also (a, p) would be greater than 1, since x2

1 ≡ a (mod p).
Let b be any other solution of the equation x2 ≡ a (mod pk). Then we have that

x2
1 − b2 ≡ (x1 − b)(x1 + b) ≡ 0 (mod pk).

Since pk is not a prime, we cannot conclude yet that pk divides x1 − b or pk divides x1 + b;
we must show it. Assume instead that there is ` such that p` divides x1− b and pk−` divides
x1 + b, so that pk divides (x1 − b)(x1 + b). We’ll write x1 − b = sp` and x1 + b = tpk−`, for s
and t integers. From this it follows, with some arithmetic manipulations, that

2b = tpk−` − sp`.

Suppose that 0 < ` < k, so that both ` and k− ` are positive. In that case, p divides the
right hand side of the equation above. However, we have that (2, p) = 1, since p is odd and
(b, p) = 1 since b is a solution of x2 ≡ a (mod p), with (a, p) = 1. Therefore (2b, p) = 1, and
we have a contradiction.

It must thus be the case that either ` = 0, in which case pk divides x1 + b, which we can
write as x1 + b ≡ 0 (mod pk), or b ≡ −x1 (mod pk). Otherwise, ` = k, in which case pk

divides x1 − b, and it follows that b ≡ x1 (mod pk). This proves that the only possibilities
for b a solution of x2 ≡ a (mod pk) are for b ≡ ±x1 (mod pk).

We now turn our attention to finding the two solutions when they exist. The idea behind
solving the equation is similar to induction:
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1. We first solve the equation x2 ≡ a (mod p) (the “base case”)

2. Given a solution to x2 ≡ a (mod pj), we compute a solution to x2 ≡ a (mod pj+1) (the
“induction step”). We repeat this step, lifting our solution from modulo p to modulo
p2 to modulo p3, until we get to the pk that is our target.

The “base case” in our class will always be easy, either because p is small or because
the equation is x2 ≡ 1, 4, 9, 16 . . . (mod p) (which have a solution in the integers which also
works modulo any prime p). We focus here on the lifting (or “induction”) step.

Assume that we have a solution x0 such that x2
0 ≡ a (mod pj). Then we look for a lift

of x0 (mod pj) to x1 (mod pj+1) that satisfies x2
1 ≡ a (mod pj+1). Concretely, this gives us

the following two equations:

1. The “lifting equation”
x1 = x0 + pjy0,

which ensures that x1 (mod pj+1) is a lift of x0 (mod pj),

2. and the equation
x2
1 ≡ a (mod pj+1),

which is the equation we are trying to solve.

Plugging the first equation into the second we get

a ≡ (x0 + pjy0)
2 (mod pj+1)

≡ x2
0 + 2x0p

jy0 + p2jy20 (mod pj+1)

≡ x2
0 + 2x0p

jy0 (mod pj+1).

Recall that our unknown here is y0. This is a linear equation in y0. Furthermore, this
equation can be shown to always have a unique solution y0 (mod p): Indeed we have

2x0p
jy0 ≡ a− x2

0 (mod pj+1).

Since x2
0 ≡ a (mod pj), a − x2

0 is divisible by pj (this is, after all, the definition of what it
means to be congruent). We also have that (2x0p

j, pj+1) = pj, since (2x0, p) = 1 (p is odd,
and x0 cannot be divisible by p and be a solution to x2 ≡ a (mod pj) if gcd(a, p) = 1).
Therefore we can divide all the way through by pj and find the unique solution to

2x0y0 ≡
a− x2

0

pj
(mod p)

by multiplying both sides of the equation by (2x0)
−1 (mod p) (which exists since (2x0, p) = 1,

as argued above).
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3 Solving x2 ≡ a (mod 2k)

We note that Proposition 2.1 still applies. Since gcd(a, 2) = 1 implies that a is odd, we now
restrict to this case. Our main result when p = 2 is the following:

Theorem 3.1. Let a be odd. Then we have the following:

1. The equation
x2 ≡ a (mod 2)

has the unique solution x ≡ 1 (mod 2).

2. The equation
x2 ≡ a (mod 4)

either

• has no solution if a ≡ 3 (mod 4); or

• has two solutions x ≡ 1, 3 (mod 4) if a ≡ 1 (mod 4).

3. When k ≥ 3, the equation
x2 ≡ a (mod 2k)

either

• has no solution if a 6≡ 1 (mod 8); or

• has four solutions x1, −x1, x1 + 2k−1, −(x1 + 2k−1) if a ≡ 1 (mod 8).

We omit the proof of this theorem for now; it is similar to the proof of Theorem 2.2,
except for a small technicality which gives 4 solutions instead of 2.

Since the cases of k = 1 and k = 2 are completely covered by the Theorem, we focus on
the case of k ≥ 3 and turn our attention to giving the four solutions in that case. The idea is
identical to the one we used for p odd, except that we must modify the lifting step slightly.
The base case is also easier.

1. We first solve the equation x2 ≡ a (mod 8). Note that if there is a solution, then a ≡ 1
(mod 8), and therefore the “base case” is always solving x2 ≡ 1 (mod 8). This has
solutions x ≡ 1, 3, 5, 7 (mod 8) and we can choose to lift any of those four solutions.

2. Given a solution x2 ≡ a (mod 2j), we compute a solution to x2 ≡ a (mod 2j+1) (the
“induction step”). We repeat this step, lifting our solution from modulo 8 to modulo
16 to modulo 32, until we get to the 2k that is our target.

We now explain the lifting step or “induction” step.
Assume that we have a solution x0 such that x2

0 ≡ a (mod 2j). Then we look for a
lift of x0 (mod 2j−1) to x1 (mod pj+1) that satisfies x2

1 ≡ a (mod pj+1). Notice the small
“backwards dance” that we must do for p = 2: We have a solution modulo 2j, but when
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lifting we treat it as if it is a solution modulo 2j−1 (we “demote” it to Z/2j−1Z) before lifting
straight to Z/2j+1Z. The reason we do this is the following: When we solve the equations
as above, if we had

x1 = x0 + 2jy0,

and
x2
1 ≡ a (mod 2j+1),

which are analogous to the equation we have when p is odd, then when we square, here is
what happens:

a ≡ (x0 + 2jy0)
2 (mod 2j+1)

≡ x2
0 + 2x02

jy0 + 22jy20 (mod 2j+1)

≡ x2
0 + 2j+1x0y0 (mod 2j+1)

≡ x2
0 (mod 2j+1).

The variable y0 has completely disappeared from the equation so we cannot solve for it!
(There is also a more serious problem which we discuss in the Remarks below.)

Instead, this is what we do: We begin with the following two equations:

1. The “lifting equation”
x1 = x0 + 2j−1y0,

which ensures that x1 (mod 2j+1) is a lift of x0 (mod 2j−1),

2. and the equation
x2
1 ≡ a (mod 2j+1),

which is the equation we are trying to solve.

Now we proceed as before: We plug the first equation into the second to get

a ≡ (x0 + 2j−1y0)
2 (mod 2j+1)

≡ x2
0 + 2x02

j−1y0 + 22j−2y20 (mod 2j+1)

≡ x2
0 + 2jx0y0 (mod 2j+1),

where now the last term disappears since 22j−2 ≡ 0 (mod 2j+1) because 2j − 2 ≥ j + 1 if
j ≥ 3 (which we have assumed to begin with since k ≥ 3).

Again our unknown here is y0 and this is a linear equation in y0. Furthermore, this
equation can be shown to always have a unique solution y0 (mod 2): Indeed we have

2jx0y0 ≡ a− x2
0 (mod 2j+1).

Since x2
0 ≡ a (mod 2j), again a−x2

0 is divisible by 2j. We also have that gcd(2jx0, 2
j+1) = 2j,

since gcd(x0, 2) = 1 (x0 cannot be divisible by 2 and be a solution to x2 ≡ a (mod 2j) if
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gcd(a, 2) = 1). Therefore we can divide all the way through by 2j and find the unique
solution to

x0y0 ≡ y0 ≡
a− x2

0

2j
(mod 2),

where here we use that x0 ≡ 1 (mod 2) since gcd(x0, 2) = 1 so x0 is odd.

Remark 3.2. We note that a quite important point has gotten swept under the rug: If

x1 = x0 + 2j−1y0,

then 0 ≤ y0 < 4 all give different lifts of x0 (mod 2j−1) to x1 (mod 2j+1). However, we have
found y0 (mod 2). Technically, we should find the two lifts of y0 (mod 2) to y0 (mod 4) to
obtain two lifts of x0 (mod 2j−1) to x1 (mod 2j+1). However, for our procedure we only
need one lift, and we find all solutions at the top level, once we have one solution to x2 ≡ a
(mod 2k).

However, this is the reason why there are four solutions and why x1 and x1 + 2k−1 are
both solutions. These are both lifts of x1 (mod 2k−2) to x1 (mod 2k) that satisfy x2 ≡ a
(mod 2k). We explain this with an example:

Example 3.3. Let us solve x2 ≡ 9 (mod 32). We begin by solving x2 ≡ 9 (mod 16), which
has solutions x ≡ 3, 5, 11, 13 (mod 16) (we can find these by solving x2 ≡ 9 (mod 8) and
lifting, or by noticing that x1 = 3 is a solution and using Theorem 3.1) . We now lift all of
the solutions to see what we obtain:

First we lift x0 = 3: We “demote” it to x0 = 3 + 8y0, then square:

9 ≡ (3 + 8y0)
2 (mod 32)

≡ 9 + 48y0 + 64y20 (mod 32)

≡ 9 + 16y0 (mod 32).

We note that the equation
9 ≡ 9 + 16y0 (mod 32)

has the unique solution y0 ≡ 0 (mod 2), but two solutions y0 ≡ 0, 2 (mod 4) (and 16
solutions in Z/32Z where this equation really lives!). This gives two different lifts of x0:

x1 ≡ 3 (mod 32) and x1 ≡ 19 (mod 32)

of x0 ≡ 3 (mod 8). We see that they are exactly of the form x1 and x1 + 16, as predicted by
the theorem.

Now let us see what happens when we lift x0 = 5. We “demote” to x0 = 5 + 8y0 then
square:

9 ≡ (5 + 8y0)
2 (mod 32)

≡ 25 + 80y0 + 64y20 (mod 32)

≡ 25 + 16y0 (mod 32).
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We note that the equation
9 ≡ 25 + 16y0 (mod 32)

has the unique solution y0 ≡ 1 (mod 2), but two solutions y0 ≡ 1, 3 (mod 4). This gives
two different lifts of x0:

x1 ≡ 13 (mod 32) and x1 ≡ 29 (mod 32)

of x0 ≡ 5 (mod 8). Again these are of the form x1 and x1 + 16.
Finally, let us lift x0 = 11: We “demote” it to x0 = 11 + 8y0, then square:

9 ≡ (11 + 8y0)
2 (mod 32)

≡ 121 + 176y0 + 64y20 (mod 32)

≡ 25 + 16y0 (mod 32).

This is the same equation we obtained when we were lifting x0 = 5, and it has solutions
y0 ≡ 1, 3 (mod 4). This gives us the two lifts of x0:

x1 ≡ 19 (mod 32) and x1 ≡ 3 (mod 32).

We see that we obtained the same solutions as when we lifted x0 = 3, which makes sense
since 3 ≡ 11 (mod 8), so we were actually doing the same lift.

Similarly, if we were to lift x0 = 13, we would get the solutions x1 ≡ 13 (mod 32) and
x1 ≡ 29 (mod 32) again since 13 ≡ 5 (mod 8). This shows how each of four solutions can
give two lifts that are solutions, but we still have only four solutions in total: There are
two pairs of solutions that each give the same two lifts. If we chose x0 (mod 16) and −x0

(mod 16) two solutions of x2 ≡ 9 (mod 16) and computed their four lifts (two lifts each) we
would get all four solutions to x2 ≡ 9 (mod 32).

Remark 3.4. We say here one more thing about the “demotion” of the solution modulo 2j

to a solution modulo 2j−1. Looking at Example 3.3, we see that starting with the solution
x0 ≡ 3 (mod 16), we obtained the two solutions x1 ≡ 3 (mod 32) and x1 ≡ 19 (mod 32).
These are both lifts of 3 (mod 16). However, starting with the solution x ≡ 5 (mod 16), we
obtained the two solutions x1 ≡ 13 (mod 32) and x1 ≡ 29 (mod 32). These are not lifts of
5 (mod 16) (but they are lifts of 5 (mod 8), of course). In fact, all of the solutions of x2 ≡ 9
(mod 32) are lifts of 3 (mod 16) and 13 (mod 16), and none are lifts of 5 (mod 16) or 11
(mod 16). However, we have that 3 ≡ 11 (mod 8) and 13 ≡ 5 (mod 8), so by demoting
down to (mod 8), we ensure that we can now lift all of the solutions. This is good because
before we solve the equation we cannot know which solutions (mod 16) lift to (mod 32).

This is why, incidentally, we cannot lift directly from a solution to x2 ≡ 9 (mod 8) to a
solution to x2 ≡ 9 (mod 32). If I choose x0 a solution of x2 ≡ 9 (mod 8), say for example
x0 ≡ 1 (mod 8), if I am unlucky x0 might not be a solution of x2 ≡ 9 (mod 16) and therefore
it will certainly not lift to a solution of x2 ≡ 9 (mod 32). To avoid this situation, I start by
choosing a solution x0 to x2 ≡ 9 (mod 16), then I demote it down to a solution of x2 ≡ 9
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(mod 8) but now since I know that I can lift to a solution to x2 ≡ 9 (mod 16), I know that
I will not be unlucky and I can also lift to a solution to x2 ≡ 9 (mod 32).

To be explicit:
x2 ≡ 9 (mod 8)

has the four solutions x ≡ 1, 3, 5, 7 (mod 8). Of these, only two lift to solutions to

x2 ≡ 9 (mod 16),

namely x ≡ 3 (mod 8) and x ≡ 5 (mod 8) lift to x ≡ 3, 11 (mod 16) and x ≡ 5, 13 (mod 16)
respectively.

Then the same thing happens at the next step: Of the four solutions x ≡ 3, 5, 11, 13
(mod 16) of the equation

x2 ≡ 9 (mod 16),

only x ≡ 3 (mod 16) and x ≡ 13 (mod 16) actually lift to solutions to

x2 ≡ 9 (mod 32),

which has solutions x ≡ 3, 13, 19, 23 (mod 32).
The reason things are so messed up, and different from the case of p odd, where every

solution modulo pj lifts to a solution modulo pj+1, is because the derivative of x2 is 2x
which is identically zero modulo 2. The deeper reason why this matters involves studying
p-adic integers and Hensel’s Lemma, which tells you exactly when solutions modulo pj to
any equation lift uniquely to a solution modulo pj+1.

4 Solving x2 ≡ a (mod m) for general m

To do this we use the Chinese Remainder Theorem. Let m = pe11 . . . pekk . Suppose that we
have a number x such that

x2 ≡ a (mod peii )

for each prime power factor peii of m. Then by changing variables to y = x2, we have that

y ≡ a (mod peii )

and therefore by the Chinese Remainder Theorem

y ≡ a (mod m)

or x2 ≡ a (mod m).
Now at the same time, suppose that we have a k-tuple (a1, a2, . . . , ak) such that for each

i
a2i ≡ a (mod peii ),

then there is a unique congruence class x (mod m) such that

x ≡ ai (mod peii ).

This explains why we may solve the equation x2 ≡ a (mod m) “prime power by prime
power.”
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Example 4.1. Let us solve the equation

x2 ≡ 1 (mod 72).

Since 72 = 23 · 33, we must solve

x2 ≡ 1 (mod 8) and x2 ≡ 1 (mod 9).

In general, we would need to use the techniques of Sections 2 and 3, since these are
equations of the form x2 ≡ a (mod pk). However, these equations are particular simple so
we are not required to do applying the lifting technique.

The equation x2 ≡ 1 (mod 8) has solutions x ≡ 1, 3, 5, 7 (mod 8), as we know.
The equation x2 ≡ 1 (mod 9) has one solution x1 ≡ 1 (mod 9). By Theorem 2.2, this

equation has two solutions and the other solution is −x1 ≡ −1 ≡ 8 (mod 9).
Therefore, for any pair (a1, a2) such that a21 ≡ 1 (mod 8) and a22 ≡ 1 (mod 9), we get

one solution to x2 ≡ 1 (mod 72). There are 8 such pairs:

(1, 1), (1, 8), (3, 1), (3, 8), (5, 1), (5, 8), (7, 1), and (7, 8).

Each pair gives a solution in the following way. In the notation of the Chinese Remainder
Theorem, we have a1 = 5, M1 = 9 and x1 = 1 and a2 = 1, M2 = 8 and x2 = −1.

Suppose we take the pair (5, 1), this stands for the Chinese Remainder Theorem problem

x ≡ 5 (mod 8), x ≡ 1 (mod 9).

Therefore we get the solution

x ≡ 5 · 9 · 1 + 1 · 8 · (−1) ≡ 37 (mod 72).

If we take the pair (7, 1), this is the pair of equations

x ≡ 7 (mod 8), x ≡ 1 (mod 9).

Therefore we get the solution

x ≡ 7 · 9 · 1 + 1 · 8 · (−1) ≡ 55 (mod 72).

In this manner we can get the 8 solutions x ≡ 1, 17, 19, 35, 37, 53, 55, 71 (mod 72) quite
quickly.
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