Math 255 - Spring 2018
Solving $x^{2} \equiv a(\bmod n)$ Solutions

1. (a) We have that $56=7 \cdot 8$, so we must solve $x^{2} \equiv 1(\bmod 7)$ and $x^{2} \equiv 1(\bmod 8)$. Thankfully, these are both easy equations!
Since $(1,7)=1$ and 7 is a power of an odd prime, $x^{2} \equiv 1(\bmod 7)$ has two solutions. What's more, we know what they are by inspection: They are $x \equiv 1$ $(\bmod 7)$ and $x \equiv-1 \equiv 6(\bmod 7)$.
The equation $x^{2} \equiv 1(\bmod 8)$ is one that should be familiar; it is the base case for the problems $x^{2} \equiv a\left(\bmod 2^{k}\right)$. It has solutions $x \equiv 1,3,5,7(\bmod 8)$.
Therefore we focus on the Chinese Remainder Theorem problem. In this case we will have $m_{1}=7$ and $m_{2}=8$. Therefore we have $M_{1}=8$ and $x_{1} \equiv 8^{-1} \equiv 1^{-1} \equiv 1$ $(\bmod 7)$, and $M_{2}=7$ and $x_{2} \equiv 7^{-1} \equiv(-1)^{-1} \equiv-1(\bmod 8)$. The general form of the solution to the problem

$$
x \equiv a_{1} \quad(\bmod 7), \quad x \equiv a_{2} \quad(\bmod 8)
$$

is therefore

$$
x \equiv 8 a_{1}-7 a_{2} \quad(\bmod 56)
$$

Forming all pairs $\left(a_{1}(\bmod 7), a_{2}(\bmod 8)\right)$ from the solutions we got, we get that we should solve the Chinese Remainder Theorem for
$(1(\bmod 7), 1(\bmod 8)),(1(\bmod 7), 3(\bmod 8)),(1(\bmod 7), 5(\bmod 8))$,
$(1(\bmod 7), 7(\bmod 8)),(6(\bmod 7), 1(\bmod 8)),(6(\bmod 7), 3(\bmod 8))$,
$(6(\bmod 7), 5(\bmod 8)),(6(\bmod 7), 7(\bmod 8))$.
Plugging into our formula we get the 8 solutions

$$
\begin{gathered}
x \equiv 8-7 \equiv 1 \quad(\bmod 56) \\
x \equiv 8-21 \equiv-13 \equiv 43 \quad(\bmod 56) \\
x \equiv 8-35 \equiv-27 \equiv 29 \quad(\bmod 56) \\
x \equiv 8-49 \equiv-41 \equiv 15 \quad(\bmod 56) \\
x \equiv 48-7 \equiv 41 \quad(\bmod 56) \\
x \equiv 48-21 \equiv 27 \quad(\bmod 56) \\
x \equiv 48-35 \equiv 13 \quad(\bmod 56) \\
x \equiv 48-49 \equiv-1 \equiv 55 \quad(\bmod 56) .
\end{gathered}
$$

Therefore the solutions to $x^{2} \equiv 1(\bmod 56)$ are

$$
x \equiv 1,13,15,27,29,41,43,55 \quad(\bmod 56) .
$$

We can note that all solutions come in pairs $x,-x(\bmod 56)$; we didn't need to do anything about it, it just happened. We also note that all solutions come in quadruplets $x,-x, x+28,-(x+28)(\bmod 56)$. We could have figured that out from the beginning to cut down on the Chinese Remainder Theorem step, but I'm not sure that would have been worth it.
(b) We have that $105=3 \cdot 5 \cdot 7$, so we must solve

$$
\begin{aligned}
& x^{2} \equiv 70 \equiv 1 \quad(\bmod 3), \\
& x^{2} \equiv 70 \equiv 0 \quad(\bmod 5), \\
& x^{2} \equiv 70 \equiv 0 \quad(\bmod 7) .
\end{aligned}
$$

Once again, thankfully these are all easy equations! The first one has solutions $x \equiv 1,2(\bmod 3)$, since $(1,3)=1$ and 3 is a power of an odd prime, the second one has unique solution $x \equiv 0(\bmod 5)$, and the last one has unique solution $x \equiv 0(\bmod 7)$.
Therefore the overall problem will have 2 solutions, which are the solutions to the two Chinese Remainder Theorem problems

$$
x \equiv 1 \quad(\bmod 3), \quad x \equiv 0 \quad(\bmod 5), \quad x \equiv 0 \quad(\bmod 7),
$$

and

$$
x \equiv 2 \quad(\bmod 3), \quad x \equiv 0 \quad(\bmod 5), \quad x \equiv 0 \quad(\bmod 7) .
$$

Here we have $m_{1}=3, m_{2}=5$ and $m_{3}=7$; and for both solutions we have $a_{2}=0$, and $a_{3}=0$. We also compute
$M_{1}=35, \quad x_{1} \equiv 35^{-1} \equiv 2^{-1} \equiv 2 \quad(\bmod 3), M_{2}=21, \quad x_{2} \equiv 21^{-1} \equiv 1^{-1} \equiv 1 \quad(\bmod 5), M_{3}=1$
(Although we note that since $a_{2}=a_{3}=0$ for both solutions, we don't actually need to know M_{2}, x_{2}, M_{3}, and x_{3}; they are only included here in case someone computed them and wants to check their work.)
Plugging this all in we have as a first solution, when $a_{1}=1$,

$$
\begin{aligned}
x & \equiv a_{1} M_{1} x_{1}+a_{2} M_{2} x_{2}+a_{3} M_{3} x_{3} \quad(\bmod 105) \\
& \equiv 70+0+0 \equiv 70 \quad(\bmod 105) .
\end{aligned}
$$

And the second solution is

$$
\begin{aligned}
x & \equiv a_{1} M_{1} x_{1}+a_{2} M_{2} x_{2}+a_{3} M_{3} x_{3} \quad(\bmod 105) \\
& \equiv 140+0+0 \equiv 35 \quad(\bmod 105) .
\end{aligned}
$$

The two solutions are therefore

$$
x \equiv 35,70 \quad(\bmod 105)
$$

We note that since we knew there would be two solutions, once we got $x \equiv 70$ (mod 105) as a solution we could have immediately concluded that the other solution was $x \equiv-70 \equiv 35(\bmod 105)$. That is acceptable reasoning, but we see that the Chinese Remainder Theorem step is not much longer to do.
(c) We have that $135=3^{3} \cdot 5$, so we must solve the two equations

$$
\begin{aligned}
& x^{2} \equiv 59 \equiv 5 \quad(\bmod 27) \\
& x^{2} \equiv 59 \equiv 4 \quad(\bmod 5)
\end{aligned}
$$

We solve the first equation, $x^{2} \equiv 5(\bmod 27)$. The base case is to solve $x^{2} \equiv 5 \equiv 2$ $(\bmod 3)$. This does not have a solution, since $1^{2} \equiv 2^{2} \equiv 1(\bmod 3)$. Therefore the whole problem has no solution.
(d) Once again we have that $135=3^{3} \cdot 5$, so we must solve the equations

$$
\begin{aligned}
& x^{2} \equiv 34 \equiv 7 \quad(\bmod 27) \\
& x^{2} \equiv 34 \equiv 4 \quad(\bmod 5)
\end{aligned}
$$

We solve the first equation, $x^{2} \equiv 7(\bmod 27)$. The base case is to solve $x^{2} \equiv 7 \equiv 1$ $(\bmod 3)$. This does have a solution, this time! One solution is $x \equiv 1(\bmod 3)$, and this is the one we will lift.
Since 3 is odd, we do the p is odd lifting. This requires solving

$$
x_{1}=1+3 y_{0} \quad \text { and } x_{1}^{2} \equiv 7 \quad(\bmod 9) .
$$

We have

$$
\begin{aligned}
\left(1+3 y_{0}\right)^{2} & \equiv 7 \quad(\bmod 9) \\
1+6 y_{0}+9 y_{0}^{2} & \equiv 7 \quad(\bmod 9) \\
6 y_{0} & \equiv 6 \quad(\bmod 9) \\
2 y_{0} & \equiv 2 \quad(\bmod 3) \\
y_{0} & \equiv 1 \quad(\bmod 3) .
\end{aligned}
$$

And therefore the lifted solution $x_{1} \equiv 1+3 \cdot 1 \equiv 4(\bmod 9)$.
We lift again! This time we solve

$$
x_{1}=4+9 y_{0} \quad \text { and } x_{1}^{2} \equiv 7 \quad(\bmod 27)
$$

We have

$$
\begin{aligned}
\left(4+9 y_{0}\right)^{2} & \equiv 7 \quad(\bmod 27) \\
16+72 y_{0}+81 y_{0}^{2} & \equiv 7 \quad(\bmod 27) \\
18 y_{0} & \equiv-9 \quad(\bmod 27) \\
2 y_{0} & \equiv-1 \quad(\bmod 3) \\
y_{0} & \equiv-2 \equiv 1 \quad(\bmod 3) .
\end{aligned}
$$

And therefore the lifted solution $x_{1} \equiv 4+9 \cdot 1 \equiv 13(\bmod 27)$. Since p is odd, there is one other solution and it is $-x_{1} \equiv-13 \equiv 14(\bmod 27)$.
We now solve the other equation, which is $x^{2} \equiv 4(\bmod 5)$. This has solutions $x \equiv 2,3(\bmod 5)$.
Since each of the two congruences have two solutions, in total we will get four solutions. They correspond to the following pairs $\left(a_{1}(\bmod 27), a_{2}(\bmod 5)\right)$:

$$
\begin{aligned}
& (13(\bmod 27), 2(\bmod 5)),(13(\bmod 27), 3(\bmod 5)) \\
& (14(\bmod 27), 2(\bmod 5)),(14(\bmod 27), 3(\bmod 5))
\end{aligned}
$$

We do the preparation steps of the Chinese Remainder Theorem: Here we will have $m_{1}=27$ and $m_{2}=5$, and we compute

$$
\begin{array}{cc}
M_{1}=5, & x_{1} \equiv 5^{-1} \equiv-16 \equiv 11 \quad(\bmod 27) \\
M_{2}=27, & x_{2} \equiv 27^{-2} \equiv 2^{-1} \equiv-2 \quad(\bmod 5)
\end{array}
$$

In general the solution to

$$
x \equiv a_{1} \quad(\bmod 27), \quad \text { and } \quad x \equiv a_{2} \quad(\bmod 5)
$$

is

$$
x \equiv 55 a_{1}-54 a_{2} \quad(\bmod 135)
$$

Therefore the four solutions are

$$
\begin{gathered}
x \equiv 55 \cdot 13-54 \cdot 2 \equiv 607 \equiv 67 \quad(\bmod 135), \\
x \equiv 55 \cdot 13-54 \cdot 3 \equiv 607 \equiv 13 \quad(\bmod 135), \\
x \equiv 55 \cdot 14-54 \cdot 2 \equiv 607 \equiv 122 \quad(\bmod 135), \\
x \equiv 55 \cdot 14-54 \cdot 3 \equiv 607 \equiv 68 \quad(\bmod 135) .
\end{gathered}
$$

The four solutions are therefore

$$
x \equiv 13,67,68,122 \quad(\bmod 135) .
$$

(e) We have that $80=2^{4} \cdot 5$. Therefore we must solve

$$
\begin{aligned}
x^{2} & \equiv 25 \equiv 9 \quad(\bmod 16) \\
x^{2} & \equiv 25 \equiv 0 \quad(\bmod 5)
\end{aligned}
$$

We can tell from knowledge of the integers that $x^{2} \equiv 9(\bmod 16)$ has solution $x \equiv 3(\bmod 16)$. Since $16=2^{4}$, this congruence has three more solutions: $x \equiv$ $-3 \equiv 13(\bmod 16), x \equiv 3+8 \equiv 11(\bmod 16)$ and $x \equiv-11 \equiv 5(\bmod 16)$. The congruence $x^{2} \equiv 0(\bmod 5)$ has unique solution $x \equiv 0(\bmod 5)$.

Therefore, overall the problem will have four solutions. We note that since for each of them $a_{2}=0$, we don't need to compute M_{2} and x_{2}. So we compute $M_{1}=5$ and $x_{1} \equiv 5^{-1} \equiv 13(\bmod 16)$. The solution to the Chinese Remainder Theorem problem will be

$$
x \equiv 65 a_{1}+0 \equiv 65 a_{1} \quad(\bmod 80),
$$

for $a_{1}=3,5,11$ and 13 . The solutions are therefore

$$
\begin{gathered}
x \equiv 65 \cdot 3 \equiv 195 \equiv 35 \quad(\bmod 80) \\
x \equiv 65 \cdot 5 \equiv 325 \equiv 5 \quad(\bmod 80) \\
x \equiv 65 \cdot 11 \equiv 715 \equiv 75 \quad(\bmod 80) \\
x \equiv 65 \cdot 13 \equiv 845 \equiv 45 \quad(\bmod 80)
\end{gathered}
$$

Therefore the four solutions of this congruence are

$$
x \equiv 5,35,45,75 \quad(\bmod 80)
$$

