Math 255 - Spring 2018
Solving $x^{2} \equiv a\left(\bmod p^{k}\right)$ Solutions

1. (a) Note that $125=5^{3}$, and $(71,125)=1$. We begin by solving $x^{2} \equiv 71(\bmod 5)$, which is the same equation as $x^{2} \equiv 1(\bmod 5)$. This has two solutions, $x \equiv 1$ $(\bmod 5)$ and $x \equiv-1 \equiv 4(\bmod 5)$, and we can lift either solution. We'll lift $x \equiv 1$ $(\bmod 5)$.
Now we lift from $x_{0} \equiv 1(\bmod 5)$ to a solution $x_{1}(\bmod 25)$. This solution will satisfy both the lifting equation:

$$
x_{1}=1+5 y_{0}
$$

(i.e. it is a lift of $1(\bmod 5))$ and the congruence we are trying to solve, which is

$$
x_{1}^{2} \equiv 71 \quad(\bmod 25)
$$

Plugging the lifting equation into the congruence and simplifying, we get:

$$
\begin{aligned}
\left(1+5 y_{0}\right)^{2} & \equiv 71 \quad(\bmod 25) \\
1+10 y_{0}+25 y_{0}^{2} & \equiv 21 \quad(\bmod 25) \\
1+10 y_{0} & \equiv 21 \quad(\bmod 25) \\
10 y_{0} & \equiv 20 \quad(\bmod 25) \\
2 y_{0} & \equiv 4 \quad(\bmod 5) \\
y_{0} & \equiv 2 \quad(\bmod 5) .
\end{aligned}
$$

Therefore we have that $x_{1} \equiv 1+5 \cdot 2 \equiv 11(\bmod 25)$ is a solution to $x^{2} \equiv 71$ (mod 25$)$. (We can check that and it is true!)
Now we lift from $x_{0} \equiv 11(\bmod 25)$ to a solution $x_{1}(\bmod 125)$. This solution will satisfy both the lifting equation:

$$
x_{1}=11+25 y_{0}
$$

(i.e. it is a lift of $11(\bmod 25))$ and the congruence we are trying to solve, which is

$$
x_{1}^{2} \equiv 71 \quad(\bmod 125)
$$

Plugging the lifting equation into the congruence and simplifying, we get:

$$
\begin{aligned}
\left(11+25 y_{0}\right)^{2} & \equiv 71 \quad(\bmod 125) \\
121+550 y_{0}+25^{2} y_{0}^{2} & \equiv 71 \quad(\bmod 125) \\
121+50 y_{0} & \equiv 71 \quad(\bmod 125) \\
50 y_{0} & \equiv-50 \quad(\bmod 125) \\
2 y_{0} & \equiv-2 \quad(\bmod 5) \\
y_{0} & \equiv-1 \equiv 4 \quad(\bmod 5) .
\end{aligned}
$$

Therefore we have that $x_{1} \equiv 11+25 \cdot 4 \equiv 111(\bmod 125)$ is a solution to $x^{2} \equiv 71$ (mod 125). (We can check that and it is true!)
Now to find all solutions, we use the theorem which says that if $(a, 125)=1$, $x^{2} \equiv a(\bmod 125)$ has exactly two solutions, given by x_{1} and $-x_{1}$. Therefore this congruence has exactly two solutions, $x \equiv 111(\bmod 125)$ and $x \equiv-111 \equiv 14$ (mod 125).
(b) Here we have that $81=3^{4}$ and $(58,81)=1$, so we apply our algorithm. We first solve $x^{2} \equiv 58 \equiv 1(\bmod 3)$, which has solution $x \equiv 1(\bmod 3)$.
We now lift to $\mathbb{Z} / 9 \mathbb{Z}$. The lifted solution x_{1} will satisfy the lifting equation

$$
x_{1}=1+3 y_{0}
$$

and the congruence

$$
x_{1}^{2} \equiv 58 \quad(\bmod 9)
$$

Plugging in, we get

$$
\begin{aligned}
\left(1+3 y_{0}\right)^{2} & \equiv 58 \quad(\bmod 9) \\
1+6 y_{0}+9 y_{0}^{2} & \equiv 58 \quad(\bmod 9) \\
1+6 y_{0} & \equiv 4 \quad(\bmod 9) \\
6 y_{0} & \equiv 3 \quad(\bmod 9) \\
2 y_{0} & \equiv 1 \quad(\bmod 3) \\
y_{0} & \equiv 2 \quad(\bmod 3) .
\end{aligned}
$$

So $x_{1} \equiv 1+3 \cdot 2 \equiv 7(\bmod 9)$ is a solution to $x^{2} \equiv 58(\bmod 9)$.
Next we lift to $\mathbb{Z} / 27 \mathbb{Z}$. The lifted solution x_{1} will satisfy the lifting equation

$$
x_{1}=7+9 y_{0}
$$

and the congruence

$$
x_{1}^{2} \equiv 58 \quad(\bmod 27)
$$

Plugging in, we get

$$
\begin{aligned}
\left(7+9 y_{0}\right)^{2} & \equiv 58 \quad(\bmod 27) \\
49+126 y_{0}+81 y_{0}^{2} & \equiv 58 \quad(\bmod 27) \\
22+18 y_{0} & \equiv 4 \quad(\bmod 27) \\
18 y_{0} & \equiv-18 \quad(\bmod 27) \\
2 y_{0} & \equiv-2 \quad(\bmod 3) \\
y_{0} & \equiv-1 \equiv 2 \quad(\bmod 3) .
\end{aligned}
$$

So $x_{1} \equiv 7+9 \cdot 2 \equiv 25(\bmod 27)$ is a solution to $x^{2} \equiv 58(\bmod 27)$.

Finally we lift to $\mathbb{Z} / 81 \mathbb{Z}$. The lifted solution x_{1} will satisfy the lifting equation

$$
x_{1}=25+27 y_{0}
$$

and the congruence

$$
x_{1}^{2} \equiv 58 \quad(\bmod 81)
$$

Plugging in, we get

$$
\begin{array}{rlrl}
\left(25+27 y_{0}\right)^{2} & \equiv 58 & (\bmod 81) \\
625+1350 y_{0}+27^{2} y_{0}^{2} & \equiv 58 & (\bmod 81) \\
58+54 y_{0} & \equiv 58 & (\bmod 81) \\
54 y_{0} & \equiv 0 & (\bmod 81) \\
2 y_{0} & \equiv 0 \quad(\bmod 3) \\
y_{0} & \equiv 0 \quad & (\bmod 3) .
\end{array}
$$

So $x_{1} \equiv 25(\bmod 81)$ is a solution to $x^{2} \equiv 58(\bmod 81)$.
Now that we have one solution we can find all solutions; they are $x \equiv 25(\bmod 81)$ and $x \equiv-25 \equiv 56(\bmod 81)$.
(c) We have that $343=7^{3}$ and $(39,343)=1$. So we begin by solving $x^{2} \equiv 39 \equiv 4$ $(\bmod 7)$. This has solution $x \equiv 2(\bmod 7)$.
We lift $x_{0} \equiv 2(\bmod 7)$ to $\mathbb{Z} / 49 \mathbb{Z}$ by solving the equations:

$$
x_{1}=2+7 y_{0} \quad \text { and } \quad x_{1}^{2} \equiv 39 \quad(\bmod 49) .
$$

We have

$$
\begin{aligned}
\left(2+7 y_{0}\right)^{2} & \equiv 39 \quad(\bmod 49) \\
4+28 y_{0}+49 y_{0}^{2} & \equiv 39 \quad(\bmod 49) \\
4+28 y_{0} & \equiv 39 \quad(\bmod 49) \\
28 y_{0} & \equiv 35 \quad(\bmod 49) \\
4 y_{0} & \equiv 5 \quad(\bmod 7) \\
y_{0} & \equiv 10 \equiv 3 \quad(\bmod 7) .
\end{aligned}
$$

And therefore $x_{1} \equiv 2+7 \cdot 3 \equiv 23(\bmod 49)$ is a solution ot $x^{2} \equiv 39(\bmod 49)$. Then, we lift $x_{0} \equiv 23(\bmod 49)$ to $\mathbb{Z} / 343 \mathbb{Z}$ by solving the equations:

$$
x_{1}=23+49 y_{0} \quad \text { and } \quad x_{1}^{2} \equiv 39 \quad(\bmod 343)
$$

We have

$$
\begin{aligned}
\left(23+49 y_{0}\right)^{2} & \equiv 39 \quad(\bmod 343) \\
529+2254 y_{0}+49^{2} y_{0}^{2} & \equiv 39 \quad(\bmod 343) \\
186+196 y_{0} & \equiv 39 \quad(\bmod 343) \\
196 y_{0} & \equiv-147 \quad(\bmod 343) \\
4 y_{0} & \equiv-3 \equiv 4 \quad(\bmod 7) \\
y_{0} & \equiv 1 \quad(\bmod 7) .
\end{aligned}
$$

And therefore $x_{1} \equiv 23+49 \cdot 1 \equiv 72(\bmod 343)$ is a solution ot $x^{2} \equiv 39(\bmod 343)$. The other solution is $x \equiv-72 \equiv 271(\bmod 343)$.
(d) We have that $121=11^{2}$ and $(89,121)=1$, so we can do our thing. We first solve $x^{2} \equiv 89 \equiv 1(\bmod 11)$, which has solution $x \equiv 1(\bmod 11)$.
We lift this solution to $\mathbb{Z} / 121 \mathbb{Z}$: The lifted solution will satisfy

$$
x_{1}=1+11 y_{0} \quad \text { and } \quad x_{1}^{2} \equiv 89 \quad(\bmod 121) .
$$

Therefore we must solve

$$
\begin{array}{rlr}
\left(1+11 y_{0}\right)^{2} & \equiv 89 \quad(\bmod 121) \\
1+22 y_{0}+121 y_{0}^{2} & \equiv 89 \quad(\bmod 121) \\
1+22 y_{0} & \equiv 89 \quad(\bmod 121) \\
22 y_{0} & \equiv 88 \quad(\bmod 121) \\
2 y_{0} \equiv 8 \quad(\bmod 11) & \\
y_{0} & \equiv 4 \quad(\bmod 11) .
\end{array}
$$

Therefore $x \equiv 1+11 \cdot 4 \equiv 45(\bmod 121)$ is one solution and the other is $x \equiv$ $-45 \equiv 76(\bmod 121)$.

