Math 255 - Spring 2018 Solving $x^{2} \equiv a\left(\bmod 2^{k}\right)$ Solutions

1. (a) We can see immediately that a solution to this equation is $x \equiv 3(\bmod 16)$, since $3^{2}=9$ in the integers (and therefore $x^{2} \equiv 9(\bmod n)$ always has solution $x \equiv 3$ $(\bmod n)$, no matter what n is; the question is what the other solutions are!).
By our theorem, the other solutions are $-x_{1} \equiv-3 \equiv 13(\bmod 16), x_{1}+8 \equiv$ $3+8 \equiv 11(\bmod 16)$ and $-\left(x_{1}+8\right) \equiv-11 \equiv 5(\bmod 16)$.
(b) Since $17 \equiv 1(\bmod 8)$, there is a solution to this equation. We choose to obtain it by lifting $x \equiv 1(\bmod 8)$.
The first step is to lift $x_{0} \equiv 1(\bmod 4)$ to a solution modulo 16 . The lifting equation is

$$
x_{1}=1+4 y_{0}
$$

and we wish to solve the quadratic equation

$$
x_{1}^{2} \equiv 17 \equiv 1 \quad(\bmod 16)
$$

(Ok, this clearly has solution $x_{1} \equiv 1(\bmod 16)$, but let's practice our lifting step.) Plugging one equation into the other, we get

$$
\begin{aligned}
\left(1+4 y_{0}\right)^{2} & \equiv 1 \quad(\bmod 16) \\
1+8 y_{0}+16 y_{0}^{2} & \equiv 1 \quad(\bmod 16) \\
8 y_{0} & \equiv 0 \quad(\bmod 16) \\
y_{0} & \equiv 0 \quad(\bmod 2) .
\end{aligned}
$$

Therefore we get the solution $x_{1} \equiv 1(\bmod 16)$, as we expected.
Now we lift $x_{0} \equiv 1(\bmod 8)$ to a solution $\mathbb{Z} / 32 \mathbb{Z}$. The lifting equation is

$$
x_{1}=1+8 y_{0}
$$

and we wish to solve the quadratic equation

$$
x_{1}^{2} \equiv 17 \quad(\bmod 32)
$$

Plugging one equation into the other, we get

$$
\begin{aligned}
\left(1+8 y_{0}\right)^{2} & \equiv 17 \quad(\bmod 32) \\
1+16 y_{0}+64 y_{0}^{2} & \equiv 17 \quad(\bmod 32) \\
16 y_{0} & \equiv 16 \quad(\bmod 32) \\
y_{0} & \equiv 1 \quad(\bmod 2) .
\end{aligned}
$$

Therefore we get the solution $x_{1} \equiv 1+8 \cdot 1 \equiv 9(\bmod 32)$. The other solutions are $-x_{1} \equiv-9 \equiv 23(\bmod 32), x_{1}+16 \equiv 9+16 \equiv 25(\bmod 32)$ and $-\left(x_{1}+16\right) \equiv$ $-25 \equiv 7(\bmod 32)$.
(c) If we are very clever, we might notice that $33 \equiv 1(\bmod 32)$. Therefore, the equation $x^{2} \equiv 33 \equiv 1(\bmod 32)$ has solution $x \equiv 1(\bmod 32)$. Then we only have one lifting step to do.
We lift $x \equiv 1(\bmod 16)$ to a solution $\mathbb{Z} / 64 \mathbb{Z}$. The lifting equation is

$$
x_{1}=1+16 y_{0}
$$

and we wish to solve

$$
x_{1}^{2} \equiv 33 \quad(\bmod 64)
$$

Plugging the first equation into the second, we get

$$
\begin{aligned}
\left(1+16 y_{0}\right)^{2} & \equiv 33 \quad(\bmod 64) \\
1+32 y_{0}+16^{2} y_{0}^{2} & \equiv 33 \quad(\bmod 64) \\
32 y_{0} & \equiv 32 \quad(\bmod 64) \\
y_{0} & \equiv 1 \quad(\bmod 2) .
\end{aligned}
$$

Therefore we get a solution $x_{1} \equiv 1+16 \cdot 1 \equiv 17(\bmod 64)$. The other three solutions are $-x_{1} \equiv-17 \equiv 47(\bmod 64), x_{1}+32 \equiv 17+32 \equiv 49(\bmod 64)$ and $-\left(x_{1}+32\right) \equiv-49 \equiv 15(\bmod 64)$.
We can also of course do the whole problem if we don't notice that $33 \equiv 1$ $(\bmod 32)$. In that case, we begin by solving $x^{2} \equiv 33 \equiv 1(\bmod 8)$, which has solution $x \equiv 1(\bmod 8)$.
The solution $x \equiv 1(\bmod 4)$ is then lifted to $x \equiv 1(\bmod 16)$:

$$
\begin{aligned}
\left(1+4 y_{0}\right)^{2} & \equiv 33 \quad(\bmod 16) \\
1+8 y_{0}+16 y_{0}^{2} & \equiv 1 \quad(\bmod 16) \\
8 y_{0} & \equiv 0 \quad(\bmod 16) \\
y_{0} & \equiv 0 \quad(\bmod 2) .
\end{aligned}
$$

The solution $x \equiv 1(\bmod 8)$ is lifted to $x \equiv 1(\bmod 32)$:

$$
\begin{aligned}
\left(1+8 y_{0}\right)^{2} & \equiv 33 \quad(\bmod 32) \\
1+16 y_{0}+64 y_{0}^{2} & \equiv 1 \quad(\bmod 32) \\
16 y_{0} & \equiv 0 \quad(\bmod 32) \\
y_{0} & \equiv 0 \quad(\bmod 2) .
\end{aligned}
$$

And we did the last lifting step first so we will not repeat it here.
(d) Here we have that $111 \equiv 7 \not \equiv 1(\bmod 8)$, so this quadratic congruence has no solution.
(e) As in problem c), if we are very clever, we might notice that $57 \equiv 25(\bmod 32)$. Therefore, the equation $x^{2} \equiv 57 \equiv 25(\bmod 32)$ has solution $x \equiv 5(\bmod 32)$. Then we only have one lifting step to do.
We lift $x \equiv 5(\bmod 16)$ to a solution $\mathbb{Z} / 64 \mathbb{Z}$. The lifting equation is

$$
x_{1}=5+16 y_{0}
$$

and we wish to solve

$$
x_{1}^{2} \equiv 57 \quad(\bmod 64)
$$

Plugging the first equation into the second, we get

$$
\begin{aligned}
\left(5+16 y_{0}\right)^{2} & \equiv 57 \quad(\bmod 64) \\
25+160 y_{0}+16^{2} y_{0}^{2} & \equiv 57 \quad(\bmod 64) \\
32 y_{0} & \equiv 32 \quad(\bmod 64) \\
y_{0} & \equiv 1 \quad(\bmod 2) .
\end{aligned}
$$

Therefore we get a solution $x_{1} \equiv 5+16 \cdot 1 \equiv 21(\bmod 64)$. The other three solutions are $-x_{1} \equiv-21 \equiv 43(\bmod 64), x_{1}+32 \equiv 21+32 \equiv 53(\bmod 64)$ and $-\left(x_{1}+32\right) \equiv-53 \equiv 11(\bmod 64)$.
We can also of course do the whole problem if we don't notice that $57 \equiv 25$ $(\bmod 32)$. In that case, we begin by solving $x^{2} \equiv 57 \equiv 1(\bmod 8)$, which has solution $x \equiv 1(\bmod 8)$.
The solution $x \equiv 1(\bmod 4)$ is then lifted to $x \equiv 5(\bmod 16)$:

$$
\begin{aligned}
\left(1+4 y_{0}\right)^{2} & \equiv 57 \quad(\bmod 16) \\
1+8 y_{0}+16 y_{0}^{2} & \equiv 9 \quad(\bmod 16) \\
8 y_{0} & \equiv 8 \quad(\bmod 16) \\
y_{0} & \equiv 1 \quad(\bmod 2) .
\end{aligned}
$$

The solution $x \equiv 5(\bmod 8)$ is lifted to $x \equiv 5(\bmod 32)$:

$$
\begin{aligned}
\left(5+8 y_{0}\right)^{2} & \equiv 57 \quad(\bmod 32) \\
25+80 y_{0}+64 y_{0}^{2} & \equiv 25 \quad(\bmod 32) \\
16 y_{0} & \equiv 0 \quad(\bmod 32) \\
y_{0} & \equiv 0 \quad(\bmod 2) .
\end{aligned}
$$

And we did the last lifting step first so we will not repeat it here.

