
Math 255 - Spring 2018
Homework 9 Solutions

1. (a) i. We have that (6, 9) = 3 and 3 divides 3, so this congruence has 3 solutions.
Dividing everything by 3, we get the equation 2x ≡ 1 (mod 3), which has
unique solution x ≡ 2 (mod 3). Lifting back up to Z/9Z, we get the three
solutions x ≡ 2, 5, 8 (mod 9).

ii. We have (10, 16) = 2 and 2 divides 8, so this congruence has 2 solutions.
Dividing everything by 2, we get the equation 5x ≡ 4 (mod 8), which has a
unique solution. Since 5−1 ≡ 5 (mod 8), we multiply both sides by 5 and get
x ≡ 20 ≡ 4 (mod 8). Lifting to Z/16Z, we get the two solutions x ≡ 4, 12
(mod 16).

(b) The six systems are (each system is on one line):

x ≡ 2 (mod 9), and x ≡ 4 (mod 16)

x ≡ 5 (mod 9), and x ≡ 4 (mod 16)

x ≡ 8 (mod 9), and x ≡ 4 (mod 16)

x ≡ 2 (mod 9), and x ≡ 12 (mod 16)

x ≡ 5 (mod 9), and x ≡ 12 (mod 16)

x ≡ 8 (mod 9), and x ≡ 12 (mod 16)

For each of the six systems, we will have M1 = 16 and x1 ≡ 16−1 (mod 9). Since
16 ≡ 7 (mod 9), we have x1 ≡ 7−1 ≡ 4 (mod 9). We will also have M2 = 9 and
x2 ≡ 9−1 (mod 16). To find this, we can use the Euclidean algorithm (because
no quick answer comes to mind):

16 = 9 + 7

9 = 7 + 2

7 = 3 · 2 + 1,

so

1 = 7− 3 · 2
= 7− 3 · (9− 7) = 4 · 7− 3 · 9
= 4 · (16− 9)− 3 · 9 = 4 · 16− 7 · 9.

Therefore we have 9−1 ≡ −7 ≡ 9 (mod 16). To keep our computation smaller,
we will choose x2 ≡ −7 (mod 16).

Now for each of the six cases we apply the CRT formula, noting that M = m1m2 =
9 · 16 = 144,

x ≡ a1x1M1 + a2x2M2 (mod 144).

1



We get:
x ≡ 2 · 4 · 16 + 4 · (−7) · 9 ≡ 20 (mod 144)
x ≡ 5 · 4 · 16 + 4 · (−7) · 9 ≡ 68 (mod 144)
x ≡ 8 · 4 · 16 + 4 · (−7) · 9 ≡ 116 (mod 144)
x ≡ 2 · 4 · 16 + 12 · (−7) · 9 ≡ 92 (mod 144)
x ≡ 5 · 4 · 16 + 12 · (−7) · 9 ≡ 140 (mod 144)
x ≡ 8 · 4 · 16 + 12 · (−7) · 9 ≡ 44 (mod 144).

The six solutions are therefore x ≡ 20, 44, 68, 92, 112, 140 (mod 144).

(c) The single system of congruences of the form stated in the problem is the system

x ≡ 2 (mod 3), and x ≡ 4 (mod 8).

For this CRT problem, M1 = 8, x1 ≡ 8−1 ≡ 2−1 ≡ 2 (mod 3), M2 = 3, and
x2 ≡ 3−1 ≡ 3 (mod 8). The unique solution is therefore

x ≡ 2 · 2 · 8 + 4 · 3 · 3 ≡ 20 (mod 24).

Lifting to solution to Z/144Z, we get the six solutions

x ≡ 20, 44, 68, 92, 116, 140 (mod 144).

We see that these are the same!

2. (a) Here we have that the moduli as written as pairwise relatively prime, so we can
just solve each equation separately and apply CRT.

In the first equation, (4, 8) = 4 and 4 divides 8, so we divide everything by 4 to
get the equation x ≡ 1 (mod 2), which is already solved.

In the second equation, we have (5, 25) = 5, but 5 does not divide 6. Therefore
there is no solution, and the system does not have a solution.

(b) This problem has it all! The equations must each be solved separately, and once
we are done with that the moduli might still not be pairwise relatively prime
(they could become pairwise relatively prime if they get smaller in just the right
way).

The first equation has (2, 8) = 2 and 2 divides 6, so we divide everything by
2 and get x ≡ 3 (mod 4). The second equation has (2, 9) = 1, so there will be
a unique solution. Since 2−1 (mod 9) exists, we can just divide both sides by 2
to get x ≡ 4 (mod 9). Finally, (3, 18) = 3 and 3 is divisible by 3, so we divide
everything by 3 and get x ≡ 1 (mod 6).

Therefore the system we were given is equivalent to the system

x ≡ 3 (mod 4), x ≡ 4 (mod 9), x ≡ 1 (mod 6).

As we feared, the moduli are not pairwise relatively prime; (4, 6) = 2 and (6, 9) =
3. So check if the equations are compatible.
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We first consider the pair

x ≡ 3 (mod 4), x ≡ 1 (mod 6).

Since 3 ≡ 1 (mod 2), the equations are compatible. Therefore we proceed with
our technique to get relatively prime moduli. The modulus of the first equation is
already a power of a prime, so it cannot be split up further. The second equation
splits into the two equations

x ≡ 1 (mod 2), x ≡ 1 (mod 3).

Therefore the system x ≡ 3 (mod 4), x ≡ 1 (mod 6) is equivalent to the system

x ≡ 3 (mod 4)

x ≡ 1 (mod 2)

x ≡ 1 (mod 3).

Since 4 is a higher power of 2 than 2 is, the equation x ≡ 1 (mod 2) is implied by
the equation x ≡ 3 (mod 4). So in the end, the equations x ≡ 3 (mod 4), x ≡ 1
(mod 6) are equivalent to the equations

x ≡ 3 (mod 4), x ≡ 1 (mod 3).

This means that our original system is now equivalent to the system

x ≡ 3 (mod 4), x ≡ 4 (mod 9), x ≡ 1 (mod 3).

We still have (3, 9) = 3, so we now investigate the pair

x ≡ 4 (mod 9), x ≡ 1 (mod 3).

Since 4 ≡ 1 (mod 3), the equations are compatible. The two moduli are powers
of prime, so we do not need to split them up; it suffices to notice that x ≡ 1
(mod 3) is implied by x ≡ 4 (mod 9), so we keep only x ≡ 4 (mod 9).

Therefore the whole system we were solving is equivalent to

x ≡ 3 (mod 4), x ≡ 4 (mod 9).

We can finally do the CRT algorithm!

Here we have M1 = 9, and x1 ≡ 9−1 ≡ 1−1 ≡ 1 (mod 4); and also M2 = 4 and
x2 ≡ 4−1 ≡ −2 ≡ 7 (mod 9). (Here we used as a trick that 4 · 2 = 8 ≡ −1
(mod 9).)

Therefore, finally we have

x ≡ a1x1M1 + a2x2M2 (mod 36)

≡ 3 · 1 · 9 + 4 · (−2) · 4 (mod 36)

≡ 27− 32 (mod 36)

≡ 31 (mod 36).

Therefore this system has the unique solution x ≡ 31 (mod 36).
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3. Let x be one of the integers we are looking for. Then we are looking for x such that

x ≡ 0 (mod 7)

x ≡ 1 (mod 2)

x ≡ 1 (mod 3)

x ≡ 1 (mod 4)

x ≡ 1 (mod 5)

x ≡ 1 (mod 6).

The moduli here are not relatively prime, but we can quickly eliminate the superfluous
equations. First, 4 is a higher power of 2 than 2 is, so we can eliminate x ≡ 1 (mod 2),
because it is implied by x ≡ 1 (mod 4). Therefore we have the system

x ≡ 0 (mod 7)

x ≡ 1 (mod 3)

x ≡ 1 (mod 4)

x ≡ 1 (mod 5)

x ≡ 1 (mod 6).

We now consider the pair of equations x ≡ 1 (mod 3), x ≡ 1 (mod 6). The equation
x ≡ 1 (mod 6) can be split up into the equations x ≡ 1 (mod 2), x ≡ 1 (mod 3), so
one of the two equations x ≡ 1 (mod 3) is superfluous. We are left with

x ≡ 0 (mod 7)

x ≡ 1 (mod 3)

x ≡ 1 (mod 4)

x ≡ 1 (mod 5)

x ≡ 1 (mod 2).

We see that x ≡ 1 (mod 2) has shown up again! But it is still superfluous because
x ≡ 1 (mod 4) is still there, so we can eliminate it one more time to end up with

x ≡ 0 (mod 7)

x ≡ 1 (mod 3)

x ≡ 1 (mod 4)

x ≡ 1 (mod 5),

and now the moduli are relatively prime.

Note that what happened here is a result of our considering the equations two-by-two in
perhaps the wrong order. We could have also said that the triple x ≡ 1 (mod 2), x ≡ 1
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(mod 3), x ≡ 1 (mod 6) is equivalent to the pair x ≡ 1 (mod 2), x ≡ 1 (mod 3), and
only after that have eliminated x ≡ 1 (mod 2) because x ≡ 1 (mod 4) implies it. That
would have stopped x ≡ 1 (mod 2) from “reappearing.” I did it in this order to show
that it doesn’t matter the order in which we eliminate equations, as long as we just
keep going.

In any case, we now solve the CRT problem with the following values:

M1 = 60, x1 ≡ 60−1 ≡ 4−1 ≡ 2 (mod 7)

M2 = 140, x2 ≡ 140−1 ≡ 2−1 ≡ 2 (mod 3)

M3 = 105, x3 ≡ 105−1 ≡ 1−1 ≡ 1 (mod 4)

M4 = 84, x4 ≡ 84−1 ≡ 4−1 ≡ −1 (mod 5).

So we get the solution

x ≡ 0 + 1 · 2 · 140 + 1 · 1 · 105 + 1 · (−1) · 84 (mod 420)

≡ 280 + 105− 84 (mod 420)

≡ 301 (mod 420).

(Note that we shouldn’t have computed M1 and x1, since a1 = 0!)

We conclude that any integer of the form requested in the question is congruent to 301
modulo 420, but the smallest positive integer satisfying those constraints is 301.

4. No matter what m is, we have that (m,m + 1) = 1. (This is because any common
divisor of m and m + 1 would also divide (m + 1)−m = 1, and the only integers that
divide 1 are 1 and −1.)

Therefore, by the Chinese Remainder Theorem the system x ≡ r (mod m), x ≡ s
(mod m + 1) has a unique solution modulo m(m + 1). As a consequence, it suffices to
prove that

r(m + 1)− sm ≡ r (mod m)

and
r(m + 1)− sm ≡ s (mod m + 1)

to prove the assertion. (This is the wonderful property of uniqueness!)

We thus begin our task:

r(m + 1)− sm ≡ rm + r − sm (mod m)

≡ r (mod m),

and

r(m + 1)− sm ≡ −sm (mod m + 1)

≡ s(−m) (mod m + 1)

≡ s (mod m + 1).

5



Therefore if x ≡ r (mod m) and x ≡ s (mod m + 1), necessarily it must be the case
that x ≡ r(m + 1)− sm (mod m(m + 1)), since this class does solve the problem and
there is a unique solution to the problem.

5. (a) The three conditions are equivalent to the system

n ≡ 0 (mod 9), n + 1 ≡ 0 (mod 16), n + 2 ≡ 0 (mod 25),

or perhaps as we usually write,

n ≡ 0 (mod 9), n ≡ −1 (mod 16), n ≡ −2 (mod 25).

The moduli are relatively prime so this is a straightforward CRT problem. Note
that since a1 = 0, we do not need to compute M1 and x1. We have

M2 = 225, x2 ≡ 225−1 ≡ 1−1 ≡ 1 (mod 16)

M3 = 144, x3 ≡ 144−1 ≡ 19−1 ≡ 4 (mod 25),

where we computed 19−1 (mod 25) using the Euclidean algorithm:

25 = 19 + 6

19 = 3 · 6 + 1

so

1 = 19− 3 · 6
= 19− 3 · (25− 19)

= 4 · 19− 3 · 25.

We can now apply the CRT algorithm:

n ≡ 0 + (−1) · 1 · 225 + (−2) · 4 · 144 (mod 3600)

≡ −225− 1152 (mod 3600)

≡ −1377 ≡ 2223 (mod 3600).

Therefore all integers n of this type are of the form 2223 + 3600t, for t ∈ Z.

(b) This time the conditions are equivalent to

n ≡ 0 (mod 4), n + 1 ≡ 0 (mod 9), n + 2 ≡ 0 (mod 16),

or
n ≡ 0 (mod 4), n ≡ −1 (mod 9), n ≡ −2 (mod 16).

However, we notice that the equations n ≡ 0 (mod 4) and n ≡ −2 (mod 16) are
not compatible, since (4, 16) = 4 and 0 6≡ −2 (mod 4). Therefore there are no
such ns.
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