Math 255 - Spring 2018
Homework 9 Solutions

1. (a) i. We have that $(6,9)=3$ and 3 divides 3 , so this congruence has 3 solutions. Dividing everything by 3 , we get the equation $2 x \equiv 1(\bmod 3)$, which has unique solution $x \equiv 2(\bmod 3)$. Lifting back up to $\mathbb{Z} / 9 \mathbb{Z}$, we get the three solutions $x \equiv 2,5,8(\bmod 9)$.
ii. We have $(10,16)=2$ and 2 divides 8 , so this congruence has 2 solutions. Dividing everything by 2 , we get the equation $5 x \equiv 4(\bmod 8)$, which has a unique solution. Since $5^{-1} \equiv 5(\bmod 8)$, we multiply both sides by 5 and get $x \equiv 20 \equiv 4(\bmod 8)$. Lifting to $\mathbb{Z} / 16 \mathbb{Z}$, we get the two solutions $x \equiv 4,12$ $(\bmod 16)$.
(b) The six systems are (each system is on one line):

$$
\begin{array}{rllll}
x \equiv 2 & (\bmod 9), & \text { and } & x \equiv 4 & (\bmod 16) \\
x \equiv 5 & (\bmod 9), & \text { and } & x \equiv 4 & (\bmod 16) \\
x \equiv 8 & (\bmod 9), & \text { and } & x \equiv 4 & (\bmod 16) \\
x \equiv 2 & (\bmod 9), & \text { and } & x \equiv 12 & (\bmod 16) \\
x \equiv 5 & (\bmod 9), & \text { and } & x \equiv 12 & (\bmod 16) \\
x \equiv 8 & (\bmod 9), & \text { and } & x \equiv 12 & (\bmod 16)
\end{array}
$$

For each of the six systems, we will have $M_{1}=16$ and $x_{1} \equiv 16^{-1}(\bmod 9)$. Since $16 \equiv 7(\bmod 9)$, we have $x_{1} \equiv 7^{-1} \equiv 4(\bmod 9)$. We will also have $M_{2}=9$ and $x_{2} \equiv 9^{-1}(\bmod 16)$. To find this, we can use the Euclidean algorithm (because no quick answer comes to mind):

$$
\begin{aligned}
16 & =9+7 \\
9 & =7+2 \\
7 & =3 \cdot 2+1,
\end{aligned}
$$

so

$$
\begin{aligned}
1 & =7-3 \cdot 2 \\
& =7-3 \cdot(9-7)=4 \cdot 7-3 \cdot 9 \\
& =4 \cdot(16-9)-3 \cdot 9=4 \cdot 16-7 \cdot 9 .
\end{aligned}
$$

Therefore we have $9^{-1} \equiv-7 \equiv 9(\bmod 16)$. To keep our computation smaller, we will choose $x_{2} \equiv-7(\bmod 16)$.
Now for each of the six cases we apply the CRT formula, noting that $M=m_{1} m_{2}=$ $9 \cdot 16=144$,

$$
x \equiv a_{1} x_{1} M_{1}+a_{2} x_{2} M_{2} \quad(\bmod 144) .
$$

We get:

$$
\begin{aligned}
& x \equiv 2 \cdot 4 \cdot 16+4 \cdot(-7) \cdot 9 \\
& \equiv \equiv 20 \quad(\bmod 144) \\
& x \equiv 5 \cdot 4 \cdot 16+4 \cdot(-7) \cdot 9 \\
& \equiv \equiv 68 \quad(\bmod 144) \\
& x \equiv 8 \cdot 4 \cdot 16+4 \cdot(-7) \cdot 9 \\
& \equiv \equiv 116 \quad(\bmod 144) \\
& x \equiv 5 \cdot 4 \cdot 16+12 \cdot(-7) \cdot 9 \equiv 92 \quad(\bmod 144) \\
& x \equiv 8 \cdot 4 \cdot 16+12 \cdot(-7) \cdot 9 \equiv 140 \quad(\bmod 144) \\
& x+12 \cdot(-7) \cdot 9 \equiv 44 \quad(\bmod 144) .
\end{aligned}
$$

The six solutions are therefore $x \equiv 20,44,68,92,112,140(\bmod 144)$.
(c) The single system of congruences of the form stated in the problem is the system

$$
x \equiv 2 \quad(\bmod 3), \quad \text { and } \quad x \equiv 4 \quad(\bmod 8)
$$

For this CRT problem, $M_{1}=8, x_{1} \equiv 8^{-1} \equiv 2^{-1} \equiv 2(\bmod 3), M_{2}=3$, and $x_{2} \equiv 3^{-1} \equiv 3(\bmod 8)$. The unique solution is therefore

$$
x \equiv 2 \cdot 2 \cdot 8+4 \cdot 3 \cdot 3 \equiv 20 \quad(\bmod 24)
$$

Lifting to solution to $\mathbb{Z} / 144 \mathbb{Z}$, we get the six solutions

$$
x \equiv 20,44,68,92,116,140 \quad(\bmod 144)
$$

We see that these are the same!
2. (a) Here we have that the moduli as written as pairwise relatively prime, so we can just solve each equation separately and apply CRT.
In the first equation, $(4,8)=4$ and 4 divides 8 , so we divide everything by 4 to get the equation $x \equiv 1(\bmod 2)$, which is already solved.
In the second equation, we have $(5,25)=5$, but 5 does not divide 6 . Therefore there is no solution, and the system does not have a solution.
(b) This problem has it all! The equations must each be solved separately, and once we are done with that the moduli might still not be pairwise relatively prime (they could become pairwise relatively prime if they get smaller in just the right way).
The first equation has $(2,8)=2$ and 2 divides 6 , so we divide everything by 2 and get $x \equiv 3(\bmod 4)$. The second equation has $(2,9)=1$, so there will be a unique solution. Since $2^{-1}(\bmod 9)$ exists, we can just divide both sides by 2 to get $x \equiv 4(\bmod 9)$. Finally, $(3,18)=3$ and 3 is divisible by 3 , so we divide everything by 3 and get $x \equiv 1(\bmod 6)$.
Therefore the system we were given is equivalent to the system

$$
x \equiv 3 \quad(\bmod 4), \quad x \equiv 4 \quad(\bmod 9), \quad x \equiv 1 \quad(\bmod 6) .
$$

As we feared, the moduli are not pairwise relatively prime; $(4,6)=2$ and $(6,9)=$ 3. So check if the equations are compatible.

We first consider the pair

$$
x \equiv 3 \quad(\bmod 4), \quad x \equiv 1 \quad(\bmod 6) .
$$

Since $3 \equiv 1(\bmod 2)$, the equations are compatible. Therefore we proceed with our technique to get relatively prime moduli. The modulus of the first equation is already a power of a prime, so it cannot be split up further. The second equation splits into the two equations

$$
x \equiv 1 \quad(\bmod 2), \quad x \equiv 1 \quad(\bmod 3) .
$$

Therefore the system $x \equiv 3(\bmod 4), x \equiv 1(\bmod 6)$ is equivalent to the system

$$
\begin{array}{ll}
x \equiv 3 & (\bmod 4) \\
x \equiv 1 & (\bmod 2) \\
x \equiv 1 & (\bmod 3) .
\end{array}
$$

Since 4 is a higher power of 2 than 2 is, the equation $x \equiv 1(\bmod 2)$ is implied by the equation $x \equiv 3(\bmod 4)$. So in the end, the equations $x \equiv 3(\bmod 4), x \equiv 1$ $(\bmod 6)$ are equivalent to the equations

$$
x \equiv 3 \quad(\bmod 4), \quad x \equiv 1 \quad(\bmod 3) .
$$

This means that our original system is now equivalent to the system

$$
x \equiv 3 \quad(\bmod 4), \quad x \equiv 4 \quad(\bmod 9), \quad x \equiv 1 \quad(\bmod 3)
$$

We still have $(3,9)=3$, so we now investigate the pair

$$
x \equiv 4 \quad(\bmod 9), \quad x \equiv 1 \quad(\bmod 3) .
$$

Since $4 \equiv 1(\bmod 3)$, the equations are compatible. The two moduli are powers of prime, so we do not need to split them up; it suffices to notice that $x \equiv 1$ $(\bmod 3)$ is implied by $x \equiv 4(\bmod 9)$, so we keep only $x \equiv 4(\bmod 9)$.
Therefore the whole system we were solving is equivalent to

$$
x \equiv 3 \quad(\bmod 4), \quad x \equiv 4 \quad(\bmod 9) .
$$

We can finally do the CRT algorithm!
Here we have $M_{1}=9$, and $x_{1} \equiv 9^{-1} \equiv 1^{-1} \equiv 1(\bmod 4)$; and also $M_{2}=4$ and $x_{2} \equiv 4^{-1} \equiv-2 \equiv 7(\bmod 9)$. (Here we used as a trick that $4 \cdot 2=8 \equiv-1$ $(\bmod 9)$.
Therefore, finally we have

$$
\begin{aligned}
x & \equiv a_{1} x_{1} M_{1}+a_{2} x_{2} M_{2} \quad(\bmod 36) \\
& \equiv 3 \cdot 1 \cdot 9+4 \cdot(-2) \cdot 4 \quad(\bmod 36) \\
& \equiv 27-32 \quad(\bmod 36) \\
& \equiv 31 \quad(\bmod 36) .
\end{aligned}
$$

Therefore this system has the unique solution $x \equiv 31(\bmod 36)$.
3. Let $x$ be one of the integers we are looking for. Then we are looking for $x$ such that

$$
\begin{array}{ll}
x \equiv 0 & (\bmod 7) \\
x \equiv 1 & (\bmod 2) \\
x \equiv 1 & (\bmod 3) \\
x \equiv 1 & (\bmod 4) \\
x \equiv 1 & (\bmod 5) \\
x \equiv 1 & (\bmod 6) .
\end{array}
$$

The moduli here are not relatively prime, but we can quickly eliminate the superfluous equations. First, 4 is a higher power of 2 than 2 is, so we can eliminate $x \equiv 1(\bmod 2)$, because it is implied by $x \equiv 1(\bmod 4)$. Therefore we have the system

$$
\begin{aligned}
& x \equiv 0 \\
& x \equiv 1 \\
& x \equiv 1 \\
& (\bmod 7) \\
& x \equiv 1 \\
& x \equiv \\
& (\bmod 4) \\
& x \equiv 1
\end{aligned} \quad(\bmod 5)
$$

We now consider the pair of equations $x \equiv 1(\bmod 3), x \equiv 1(\bmod 6)$. The equation $x \equiv 1(\bmod 6)$ can be split up into the equations $x \equiv 1(\bmod 2), x \equiv 1(\bmod 3)$, so one of the two equations $x \equiv 1(\bmod 3)$ is superfluous. We are left with

$$
\begin{array}{ll}
x \equiv 0 & (\bmod 7) \\
x \equiv 1 & (\bmod 3) \\
x \equiv 1 & (\bmod 4) \\
x \equiv 1 & (\bmod 5) \\
x \equiv 1 & (\bmod 2) .
\end{array}
$$

We see that $x \equiv 1(\bmod 2)$ has shown up again! But it is still superfluous because $x \equiv 1(\bmod 4)$ is still there, so we can eliminate it one more time to end up with

$$
\begin{array}{ll}
x \equiv 0 & (\bmod 7) \\
x \equiv 1 & (\bmod 3) \\
x \equiv 1 & (\bmod 4) \\
x \equiv 1 & (\bmod 5),
\end{array}
$$

and now the moduli are relatively prime.
Note that what happened here is a result of our considering the equations two-by-two in perhaps the wrong order. We could have also said that the triple $x \equiv 1(\bmod 2), x \equiv 1$
$(\bmod 3), x \equiv 1(\bmod 6)$ is equivalent to the pair $x \equiv 1(\bmod 2), x \equiv 1(\bmod 3)$, and only after that have eliminated $x \equiv 1(\bmod 2)$ because $x \equiv 1(\bmod 4)$ implies it. That would have stopped $x \equiv 1(\bmod 2)$ from "reappearing." I did it in this order to show that it doesn't matter the order in which we eliminate equations, as long as we just keep going.
In any case, we now solve the CRT problem with the following values:

$$
\begin{array}{ccc}
M_{1}=60, & x_{1} \equiv 60^{-1} \equiv 4^{-1} \equiv 2 & (\bmod 7) \\
M_{2}=140, & x_{2} \equiv 140^{-1} \equiv 2^{-1} \equiv 2 & (\bmod 3) \\
M_{3}=105, & x_{3} \equiv 105^{-1} \equiv 1^{-1} \equiv 1 & (\bmod 4) \\
M_{4}=84, & x_{4} \equiv 84^{-1} \equiv 4^{-1} \equiv-1 & (\bmod 5) .
\end{array}
$$

So we get the solution

$$
\begin{aligned}
x & \equiv 0+1 \cdot 2 \cdot 140+1 \cdot 1 \cdot 105+1 \cdot(-1) \cdot 84 \quad(\bmod 420) \\
& \equiv 280+105-84 \quad(\bmod 420) \\
& \equiv 301 \quad(\bmod 420)
\end{aligned}
$$

(Note that we shouldn't have computed $M_{1}$ and $x_{1}$, since $a_{1}=0$ !)
We conclude that any integer of the form requested in the question is congruent to 301 modulo 420, but the smallest positive integer satisfying those constraints is 301 .
4. No matter what $m$ is, we have that $(m, m+1)=1$. (This is because any common divisor of $m$ and $m+1$ would also divide $(m+1)-m=1$, and the only integers that divide 1 are 1 and -1 .)
Therefore, by the Chinese Remainder Theorem the system $x \equiv r(\bmod m), x \equiv s$ $(\bmod m+1)$ has a unique solution modulo $m(m+1)$. As a consequence, it suffices to prove that

$$
r(m+1)-s m \equiv r \quad(\bmod m)
$$

and

$$
r(m+1)-s m \equiv s \quad(\bmod m+1)
$$

to prove the assertion. (This is the wonderful property of uniqueness!)
We thus begin our task:

$$
\begin{aligned}
r(m+1)-s m & \equiv r m+r-s m \quad(\bmod m) \\
& \equiv r \quad(\bmod m)
\end{aligned}
$$

and

$$
\begin{aligned}
r(m+1)-s m & \equiv-s m \quad(\bmod m+1) \\
& \equiv s(-m) \quad(\bmod m+1) \\
& \equiv s \quad(\bmod m+1)
\end{aligned}
$$

Therefore if $x \equiv r(\bmod m)$ and $x \equiv s(\bmod m+1)$, necessarily it must be the case that $x \equiv r(m+1)-s m(\bmod m(m+1))$, since this class does solve the problem and there is a unique solution to the problem.
5. (a) The three conditions are equivalent to the system

$$
n \equiv 0 \quad(\bmod 9), \quad n+1 \equiv 0 \quad(\bmod 16), \quad n+2 \equiv 0 \quad(\bmod 25)
$$

or perhaps as we usually write,

$$
n \equiv 0 \quad(\bmod 9), \quad n \equiv-1 \quad(\bmod 16), \quad n \equiv-2 \quad(\bmod 25)
$$

The moduli are relatively prime so this is a straightforward CRT problem. Note that since $a_{1}=0$, we do not need to compute $M_{1}$ and $x_{1}$. We have

$$
\begin{array}{ccc}
M_{2}=225, & x_{2} \equiv 225^{-1} \equiv 1^{-1} \equiv 1 & (\bmod 16) \\
M_{3}=144, & x_{3} \equiv 144^{-1} \equiv 19^{-1} \equiv 4 & (\bmod 25),
\end{array}
$$

where we computed $19^{-1}(\bmod 25)$ using the Euclidean algorithm:

$$
\begin{aligned}
& 25=19+6 \\
& 19=3 \cdot 6+1
\end{aligned}
$$

so

$$
\begin{aligned}
1 & =19-3 \cdot 6 \\
& =19-3 \cdot(25-19) \\
& =4 \cdot 19-3 \cdot 25 .
\end{aligned}
$$

We can now apply the CRT algorithm:

$$
\begin{aligned}
n & \equiv 0+(-1) \cdot 1 \cdot 225+(-2) \cdot 4 \cdot 144 \quad(\bmod 3600) \\
& \equiv-225-1152 \quad(\bmod 3600) \\
& \equiv-1377 \equiv 2223 \quad(\bmod 3600)
\end{aligned}
$$

Therefore all integers $n$ of this type are of the form $2223+3600 t$, for $t \in \mathbb{Z}$.
(b) This time the conditions are equivalent to

$$
n \equiv 0 \quad(\bmod 4), \quad n+1 \equiv 0 \quad(\bmod 9), \quad n+2 \equiv 0 \quad(\bmod 16),
$$

or

$$
n \equiv 0 \quad(\bmod 4), \quad n \equiv-1 \quad(\bmod 9), \quad n \equiv-2 \quad(\bmod 16) .
$$

However, we notice that the equations $n \equiv 0(\bmod 4)$ and $n \equiv-2(\bmod 16)$ are not compatible, since $(4,16)=4$ and $0 \not \equiv-2(\bmod 4)$. Therefore there are no such $n$ s.

