Math 255 - Spring 2018
Homework 9

This homework is due on Monday, April 2.

1. Consider the system of congruences

$$
\begin{aligned}
6 x & \equiv 3 \quad(\bmod 9) \\
10 x & \equiv 8 \quad(\bmod 16) .
\end{aligned}
$$

(a) Solve each of the following congruences:
i. $6 x \equiv 3(\bmod 9)$
ii. $10 x \equiv 8(\bmod 16)$
(b) The system of congruences above is equivalent to 6 distinct systems of congruences of the form $x \equiv a_{1}(\bmod 9), \quad x \equiv a_{2}(\bmod 16)$. Write down these 6 systems and solve each of them using the Chinese Remainder Theorem.
(c) The system of congruences above is equivalent to a single system of congruences of the form $a_{1} x \equiv b_{1}(\bmod 3), \quad a_{2} x \equiv b_{2}(\bmod 8)$. Write down this system, solve it using the Chinese Remainder Theorem, and lift your solutions to $\mathbb{Z} / 144 \mathbb{Z}$.
2. Solve each of the following systems of congruences. For each system of equations, be sure to list all distinct solutions, and the ring they belong to.
(a) $4 x \equiv 4(\bmod 8), \quad 5 x \equiv 6(\bmod 25), \quad 3 x \equiv 6(\bmod 27)$
(b) $2 x \equiv 6(\bmod 8), \quad 2 x \equiv 8(\bmod 9), \quad 3 x \equiv 3(\bmod 18)$
3. Find a multiple of 7 that leaves a remainder of 1 when divided by $2,3,4,5$ and 6 .
4. Let x, r, s and m be integers, with $m>1$. Show that if $x \equiv r(\bmod m)$ and $x \equiv s$ $(\bmod m+1)$, then

$$
x \equiv r(m+1)-s m \quad(\bmod m(m+1)) .
$$

Extra problem for graduate credit:
5. Notice that the three consecutive integers 48, 49 and 50 each have a square factor. In this problem we will investigate when/if this happens.
(a) Give an expression for all integers n such that $3^{2}\left|n, 4^{2}\right|(n+1)$ and $5^{2} \mid(n+2)$.
(b) Is there n such that $2^{2}\left|n, 3^{2}\right|(n+1)$ and $4^{2} \mid(n+2)$?

