1. (a) Since $(2,17)=1$, there will be a unique solution. Furthermore, it might be easy to see that $2 \cdot 9=18 \equiv 1(\bmod 17)$, and therefore $2^{-1} \equiv 9(\bmod 17)$. (If this is not clear, no worries, we can do the Euclidean algorithm to find the inverse of 2 modulo 17. This always works but I will start to point out the little tricks that go faster.)
Therefore, multiplying both sides of the equation by 9 , we get

$$
\begin{aligned}
9 \cdot 2 x & \equiv 9 \cdot 1 \quad(\bmod 17) \\
x & \equiv 9 \quad(\bmod 17)
\end{aligned}
$$

and the unique solution is $x \equiv 9(\bmod 17)$.
(b) We have that $(6,15)=3$, and $3 \mid 15$, so there will be three solutions. We begin by dividing everything by 3 , to obtain the equation

$$
2 x \equiv 5 \quad(\bmod 7)
$$

Now $(2,7)=1$, so this equation has a unique solution. Furthermore, since $2 \cdot 4=$ $8 \equiv 1(\bmod 7)$, we have that $2^{-1} \equiv 4(\bmod 7)$. Therefore multiplying both sides by 4 we get

$$
\begin{aligned}
4 \cdot 2 x & \equiv 4 \cdot 5 \quad(\bmod 7) \\
x & \equiv 6 \quad(\bmod 7)
\end{aligned}
$$

Now to solve the problem it remains to lift $x \equiv 6(\bmod 7)$ to the possible congruence classes modulo 21. The lifts are

$$
x \equiv 6,13,20 \quad(\bmod 21)
$$

Therefore those are the 3 solutions modulo 21.
Note that $x \equiv 6(\bmod 7)$ is the same as $x \equiv-1(\bmod 7)$. If we "naively" lift $x \equiv-1(\bmod 7)$ to $x \equiv-1 \equiv 20(\bmod 21)$, we still get a valid lift!
(c) Since the numbers are small, we can compute $(36,102)$ by factoring each into their prime factors: $36=2^{2} \cdot 3^{2}$ and $102=2 \cdot 3 \cdot 17$, so $(36,102)=6$. Since 6 does not divide 8 , this congruence has no solution.
(d) We have that $(4,18)=2$, and 2 divides 8 , so this congruence has two solutions. We begin by dividing everything by 2 , and we get the equation

$$
2 x \equiv 4 \quad(\bmod 9)
$$

Here $(2,9)=1$, so we can divide by 2 on both sides (really we multiply by 2^{-1}, whatever it may be), to get the solution $x \equiv 2(\bmod 9)$.

We now lift $x \equiv 2(\bmod 9)$ to the possible congruence classes modulo 18 ; the lifts are

$$
x \equiv 2,11 \quad(\bmod 18)
$$

These are the two solutions modulo 18.
Note that we may not divide both sides by 4 in the equation $4 x \equiv 8(\bmod 18)$, since 4 is not a unit modulo $18\left(4^{-1}(\bmod 18)\right.$ does not exist). If we are careless and we try anyway, we get only the solution $x \equiv 2(\bmod 18)$ and miss the solution $x \equiv 11(\bmod 18)$, which is incorrect. In short, we can only divide by 2 if 2^{-1} exists!
(e) Here we use the Euclidean Algorithm to compute (20,1984), because 1984 is a bit of a large number:

$$
\begin{aligned}
1984 & =20 \cdot 99+4 \\
20 & =5 \cdot 4 .
\end{aligned}
$$

Therefore $(20,1984)=4$, and since 4 divides 984 , this congruence has four solutions.
We again divide everything by 4 to get the congruence

$$
5 x \equiv 246 \quad(\bmod 496)
$$

which has a unique solution. To find $5^{-1}(\bmod 496)$, we can certainly use the Euclidean Algorithm and back-substitution; that would be very fast and easy. But here is a trick: We have that

$$
495 \equiv-1 \quad(\bmod 496)
$$

Since $495=5 \cdot 99$, it means that

$$
5 \cdot 99 \equiv-1 \quad(\bmod 496)
$$

and multiplying both sides by -1 we get

$$
5 \cdot(-99) \equiv 1 \quad(\bmod 496)
$$

Therefore we have

$$
5^{-1} \equiv-99 \equiv 397 \quad(\bmod 496)
$$

We now use this to solve

$$
5 x \equiv 246 \quad(\bmod 496)
$$

which gives

$$
x \equiv 246 \cdot 397 \equiv 97,662 \equiv 446 \quad(\bmod 496) .
$$

(We can get this last congruence by subtracting from 97, 662 multiples of 496:

$$
\begin{aligned}
97,662 & \equiv 97,663-496 \cdot 100 \equiv 48,062 \quad(\bmod 496) \\
& \equiv 48,062-496 \cdot 80 \equiv 8382 \quad(\bmod 496) \\
& \equiv 8382-496 \cdot 15 \equiv 942 \quad(\bmod 496) \\
& \equiv 942-496 \equiv 446 \quad(\bmod 496) .)
\end{aligned}
$$

In any case, it only remains to lift $x \equiv 446(\bmod 496)$ to its preimages modulo 1984:

$$
x \equiv 446,942,1438,1934 \quad(\bmod 1984)
$$

Those are the four solutions we were promised!
2. The key is to translate this problem into an equation we can solve. The sequence

$$
a, 2 a, 3 a, \ldots, b a
$$

can be written more compactly as

$$
a x \quad \text { for } \quad 1 \leq x \leq b
$$

Furthermore, something is a multiple of b if and only if it is congruent to 0 modulo b. Therefore, the question is: As x ranges over $1 \leq x \leq b$, how many solutions does the equation

$$
a x \equiv 0 \quad(\bmod b)
$$

have? In fact, if we allow $x=0$ instead of $x=b($ which is okay because $0 \equiv b(\bmod b))$, all we are asking is: How many solutions does the equation

$$
a x \equiv 0 \quad(\bmod b)
$$

have?
We apply Theorem 1 to answer this question. We note first that since every integer divides 0 , then certainly (a, b), no matter what it is, divides 0 . Therefore, there are always exactly (a, b) solutions to this equation, and therefore (a, b) multiples of b in the sequence $a, 2 a, \ldots, b a$.
We illustrate this with two examples: If $(a, b)=1$, then the only multiple of b in the sequence is $b a$. However, if $a=14$ and $b=6$, then $(14,6)=2$, and there are indeed 2 multiples of 6 in the sequence

$$
14,28,42=6 \cdot 7,56,70,84=6 \cdot 14
$$

