
Math 255 - Spring 2018
Homework 8 Solutions

1. (a) Since (2, 17) = 1, there will be a unique solution. Furthermore, it might be easy
to see that 2 · 9 = 18 ≡ 1 (mod 17), and therefore 2−1 ≡ 9 (mod 17). (If this is
not clear, no worries, we can do the Euclidean algorithm to find the inverse of 2
modulo 17. This always works but I will start to point out the little tricks that
go faster.)

Therefore, multiplying both sides of the equation by 9, we get

9 · 2x ≡ 9 · 1 (mod 17)

x ≡ 9 (mod 17)

and the unique solution is x ≡ 9 (mod 17).

(b) We have that (6, 15) = 3, and 3|15, so there will be three solutions. We begin by
dividing everything by 3, to obtain the equation

2x ≡ 5 (mod 7).

Now (2, 7) = 1, so this equation has a unique solution. Furthermore, since 2 · 4 =
8 ≡ 1 (mod 7), we have that 2−1 ≡ 4 (mod 7). Therefore multiplying both sides
by 4 we get

4 · 2x ≡ 4 · 5 (mod 7)

x ≡ 6 (mod 7).

Now to solve the problem it remains to lift x ≡ 6 (mod 7) to the possible con-
gruence classes modulo 21. The lifts are

x ≡ 6, 13, 20 (mod 21).

Therefore those are the 3 solutions modulo 21.

Note that x ≡ 6 (mod 7) is the same as x ≡ −1 (mod 7). If we “naively” lift
x ≡ −1 (mod 7) to x ≡ −1 ≡ 20 (mod 21), we still get a valid lift!

(c) Since the numbers are small, we can compute (36, 102) by factoring each into
their prime factors: 36 = 22 · 32 and 102 = 2 · 3 · 17, so (36, 102) = 6. Since 6 does
not divide 8, this congruence has no solution.

(d) We have that (4, 18) = 2, and 2 divides 8, so this congruence has two solutions.
We begin by dividing everything by 2, and we get the equation

2x ≡ 4 (mod 9).

Here (2, 9) = 1, so we can divide by 2 on both sides (really we multiply by 2−1,
whatever it may be), to get the solution x ≡ 2 (mod 9).
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We now lift x ≡ 2 (mod 9) to the possible congruence classes modulo 18; the lifts
are

x ≡ 2, 11 (mod 18).

These are the two solutions modulo 18.

Note that we may not divide both sides by 4 in the equation 4x ≡ 8 (mod 18),
since 4 is not a unit modulo 18 (4−1 (mod 18) does not exist). If we are careless
and we try anyway, we get only the solution x ≡ 2 (mod 18) and miss the solution
x ≡ 11 (mod 18), which is incorrect. In short, we can only divide by 2 if 2−1 exists!

(e) Here we use the Euclidean Algorithm to compute (20, 1984), because 1984 is a bit
of a large number:

1984 = 20 · 99 + 4

20 = 5 · 4.

Therefore (20, 1984) = 4, and since 4 divides 984, this congruence has four solu-
tions.

We again divide everything by 4 to get the congruence

5x ≡ 246 (mod 496),

which has a unique solution. To find 5−1 (mod 496), we can certainly use the
Euclidean Algorithm and back-substitution; that would be very fast and easy.
But here is a trick: We have that

495 ≡ −1 (mod 496).

Since 495 = 5 · 99, it means that

5 · 99 ≡ −1 (mod 496),

and multiplying both sides by −1 we get

5 · (−99) ≡ 1 (mod 496).

Therefore we have
5−1 ≡ −99 ≡ 397 (mod 496).

We now use this to solve

5x ≡ 246 (mod 496),

which gives
x ≡ 246 · 397 ≡ 97, 662 ≡ 446 (mod 496).
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(We can get this last congruence by subtracting from 97, 662 multiples of 496:

97, 662 ≡ 97, 663− 496 · 100 ≡ 48, 062 (mod 496)

≡ 48, 062− 496 · 80 ≡ 8382 (mod 496)

≡ 8382− 496 · 15 ≡ 942 (mod 496)

≡ 942− 496 ≡ 446 (mod 496).)

In any case, it only remains to lift x ≡ 446 (mod 496) to its preimages modulo
1984:

x ≡ 446, 942, 1438, 1934 (mod 1984).

Those are the four solutions we were promised!

2. The key is to translate this problem into an equation we can solve. The sequence

a, 2a, 3a, . . . , ba

can be written more compactly as

ax for 1 ≤ x ≤ b.

Furthermore, something is a multiple of b if and only if it is congruent to 0 modulo b.

Therefore, the question is: As x ranges over 1 ≤ x ≤ b, how many solutions does the
equation

ax ≡ 0 (mod b)

have? In fact, if we allow x = 0 instead of x = b (which is okay because 0 ≡ b (mod b)),
all we are asking is: How many solutions does the equation

ax ≡ 0 (mod b)

have?

We apply Theorem 1 to answer this question. We note first that since every integer
divides 0, then certainly (a, b), no matter what it is, divides 0. Therefore, there are
always exactly (a, b) solutions to this equation, and therefore (a, b) multiples of b in
the sequence a, 2a, . . . , ba.

We illustrate this with two examples: If (a, b) = 1, then the only multiple of b in the
sequence is ba. However, if a = 14 and b = 6, then (14, 6) = 2, and there are indeed 2
multiples of 6 in the sequence

14, 28, 42 = 6 · 7, 56, 70, 84 = 6 · 14.
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