
Math 255 - Spring 2018
Homework 7 Solutions

1. (a) This is true, so we will prove it.

Since a ≡ b (mod m), we have that by definition m divides a − b, or there is an
integer k with a− b = km.

We now consider a2 − b2. If we can show that m divides this, then we will know
that a2 ≡ b2 (mod m).

We have that a2 − b2 = (a− b)(a + b), and substituting our expression above for
a− b, we have that

a2 − b2 = km(a + b) = m (k(a + b)) .

Since k(a + b) is an integer, m divides a2 − b2 and a2 ≡ b2 (mod m).

Note: Alternatively we can use Lemma 1, part e) with c = a and d = b, and be
done. But it is kind of nice to see it directly with the definition.

(b) This is false, so we disprove it. (We expect this to be false since it is not true that
if a, b, c and m are integers with m > 0, ac ≡ bc (mod m) does not imply that
a ≡ b (mod m), so certainly something is going on.)

Let a = 2, b = 4 and m = 12. Then a2 = 22 = 4 and b2 = 42 = 16, and indeed
4 ≡ 16 (mod 12). However, 2 6≡ 4 (mod 12) and 2 6≡ −4 (mod 12) (note that
−4 ≡ 8 (mod 12)). This is a counter-example so the claim is disproved.

2. If 1848 ≡ 1914 (mod m), then m divides 1848 − 1914. Therefore m must be any one
of the divisors of 1848− 1914 = −66 that are strictly greater than 1. Those are

2, 3, 6, 11, 22, 33, and 66.

3. Let n and n+1 be any two consecutive integers, so that n3 and (n+1)3 are consecutive
cubes. Their difference is

(n + 1)3 − n3 = 3n2 + 3n + 1.

We consider the values that this can take modulo 5, by considering the values that n
can take modulo 5. We note that by Section 4, Exercise 5, 5 divides (n + 1)3 − n3 if
and only if (n + 1)3 − n3 ≡ 0 (mod 5). For our computations we will use Lemma 1
parts d) and e).

If n ≡ 0 (mod 5), then 3n2 + 3n+ 1 ≡ 3 · 02 + 3 · 0 + 1 ≡ 1 (mod 5). Therefore 5 does
not divide the difference in this case.

If n ≡ 1 (mod 5), then 3n2 + 3n + 1 ≡ 3 · 12 + 3 · 1 + 1 ≡ 3 + 3 + 1 ≡ 7 ≡ 2 (mod 5).
Therefore 5 does not divide the difference in this case.
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If n ≡ 2 (mod 5), then 3n2 + 3n+ 1 ≡ 3 · 22 + 3 · 2 + 1 ≡ 12 + 6 + 1 ≡ 19 ≡ 4 (mod 5).
Therefore 5 does not divide the difference in this case.

If n ≡ 3 (mod 5), then 3n2 + 3n+ 1 ≡ 3 · 32 + 3 · 3 + 1 ≡ 27 + 9 + 1 ≡ 37 ≡ 2 (mod 5).
Therefore 5 does not divide the difference in this case.

If n ≡ 4 (mod 5), then 3n2 + 3n+ 1 ≡ 3 ·42 + 3 ·4 + 1 ≡ 48 + 12 + 1 ≡ 61 ≡ 1 (mod 5).
Therefore 5 does not divide the difference in this case.

By Section 4, Theorem 2, n must be congruent to 0, 1, 2, 3 or 4 modulo 5. We have
established that in each case 5 does not divide (n + 1)3 − n3, and therefore 5 never
divides the difference of two consecutive cubes.

4. We consider whether it is possible to have n = a3 + b3 for a and b integers, if n ≡ 4
(mod 9).

To do so, we consider the values that a3 (and therefore also b3, since a and b are
arbitrary integers) can take modulo 9. To do that, we consider all of the values that a
can take modulo 9, and compute its cube. We tabulate this into a table:

a a3 a3 (mod 9) a a3 a3 (mod 9)
0 0 0 5 125 8
1 1 1 6 216 0
2 8 8 7 343 1
3 27 0 8 512 8
4 64 1

Therefore we see that no matter what a is, the only possibilities for a3 (mod 9) are
0, 1 or 8. As we remarked above, this is therefore also the case for b. Up to reordering,
the possibilities for the pairs (a3 (mod 9), b3 (mod 9)) are

(0, 0), (0, 1), (0, 8), (1, 1), (1, 8), (8, 8).

(We do not care about reordering since reordering will not change the value of the sum
a3 + b3 (mod 9), and all we care about is showing that it cannot be 4 (mod 9).)

We verify quickly that in each case the sum of the three entries is not 4 (mod 9):

(a3 (mod 9), b3 (mod 9)) a3 + b3 (mod 9)
(0, 0) 0 (mod 9)
(0, 1) 1 (mod 9)
(0, 8) 8 (mod 9)
(1, 1) 2 (mod 9)
(1, 8) 9 ≡ 0 (mod 9)
(8, 8) 16 ≡ 7 (mod 9)
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Therefore if n ≡ 4 (mod 9), it cannot be the sum of two cubes, since the sum of two
cubes must be 0, 1, 2, 7 or 8 (mod 9).

5. Just for fun, let’s use the representatives −5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6 for the
elements of Z/12Z. To simplify the notation, we will also simply write r instead of
[r]12, since we understand that we are working with elements of Z/12Z, and not integers
or elements of a different Z/mZ.

(a) We have

× −5 −4 −3 −2 −1 0 1 2 3 4 5 6
−5 1 −4 3 −2 5 0 −5 2 −3 4 −1 6
−4 −4 4 0 −4 4 0 −4 4 0 −4 4 0
−3 3 0 −3 6 3 0 −3 6 3 0 −3 6
−2 −2 −4 6 4 2 0 −2 −4 6 4 2 0
−1 5 4 3 2 1 0 −1 −2 −3 −4 −5 6
0 0 0 0 0 0 0 0 0 0 0 0 0
1 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
2 2 4 6 −4 −2 0 2 4 6 −4 −2 0
3 −3 0 3 6 −3 0 3 6 −3 0 3 6
4 4 −4 0 4 −4 0 4 −4 0 4 −4 0
5 −1 4 −3 2 −5 0 5 −2 3 −4 1 6
6 6 0 6 0 6 0 6 0 6 0 6 0

(b) The units are exactly the elements for which 1 appears in the associated row or
column. They are the classes represented by

• −5 (since (−5) · (−5) ≡ 1 (mod 12)),

• −1 (since (−1) · (−1) ≡ 1 (mod 12)),

• 1 (since 1 · 1 ≡ 1 (mod 12)),

• and 5 (since 5 · 5 ≡ 1 (mod 12)).

(c) The zero divisors are exactly the elements for which 0 appears at least twice (since
a · 0 ≡ 0 (mod 12), so we need to get 0 some other time to conclude that a is a
zero divisor) in the associated row or column. They are the classes represented
by

• −4 (since (−4) · (−3) ≡ 0 (mod 12)),

• −3 (since (−3) · (−4) ≡ 0 (mod 12)),

• −2 (since (−2) · 6 ≡ 0 (mod 12)),

• 0 (since 0 · (−5) ≡ 0 (mod 12)),

• 2 (since 2 · 6 ≡ 0 (mod 12)),

• 3 (since 3 · (−4) ≡ 0 (mod 12)),

• 4 (since 4 · (−3) ≡ 0 (mod 12)),

• and 6 (since 6 · (−4) ≡ 0 (mod 12)).
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Note that for parts (b) and (c) one could also have used the Theorem from class saying
when a represents a unit modulo 12, but it’s nice to work it out “by hand.”

6. (a) If we do not see a solution right away, we can use our trusty Euclidean algorithm:

23 = 7 · 3 + 2

7 = 2 · 3 + 1.

Back-solving, we get

1 = 7− 3 · 2
= 7− 3 · (23− 3 · 7)

= 7− 3 · 23 + 9 · 7
= 10 · 7− 3 · 23.

Therefore one possible integer solution is x = 10 and y = −3. (There are of
course infinitely many; they are of the form x = 10 + 23t and y = −3 − 7t for t
any integer.)

(b) If we reduce the left hand side of 7x + 23y = 1 to their least residue modulo 23
we get

7x + 23y ≡ 7x (mod 23).

The least residue of the right hand side is 1. Therefore in Z/23Z, the equation
we solved is

7x ≡ 1 (mod 23),

which is exactly the equation we are trying to solve now. Therefore a solution is
v = 10, or in fact, any integer v such that v ≡ 10 (mod 23).

Alternatively, we may argue that for any integer solution x to part (a), we have

7x− 1 = −23y,

by rearranging the equation. Since y is an integer, −23y is divisible by 23, and
therefore 7x ≡ 1 (mod 23) by definition. Therefore any x that is a solution to
part (a) will be a solution to part (b).

7. By assumption and using Theorem 1 from Section 4, we have that there exists an
integer ` such that

x = 1 + `mk.

Now if we raise each side to the power of m, we get

xm = (1 + `mk)m.
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We expand the right hand side with the binomial formula:

xm = (1 + `mk)m

=
m∑
i=0

(
m

i

)
`imki.

We note that when i ≥ 2, then mki is divisible by mk+1. Therefore much of the sum is
zero modulo mk+1 and we can write

xm =
m∑
i=0

(
m

i

)
`imki

≡ 1 +

(
m

1

)
`mk (mod mk+1).

We now note that
(
m
1

)
= m, so that we have nothing other than

xm ≡ 1 +

(
m

1

)
`mk

≡ 1 + `mk+1 (mod mk+1)

≡ 1 (mod mk+1).
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