Math 255 - Spring 2018
Homework 7
This homework is due on Monday, March 5.

1. (a) Let a, b and m be integers with $m>0$. Prove or disprove that if $a \equiv b(\bmod m)$, then $a^{2} \equiv b^{2}(\bmod m)$.
(b) Let a, b and m be integers with $m>0$. Prove or disprove that if $a^{2} \equiv b^{2}(\bmod m)$, then $a \equiv b(\bmod m)$ or $a \equiv-b(\bmod m)$.
2. Find all integers $m>1$ such that $1848 \equiv 1914(\bmod m)$.
3. Show that the difference of two consecutive cubes is never divisible by 5 .
4. Let n be an integer. Show that if $n \equiv 4(\bmod 9)$ then n cannot be written as the sum of two cubes.
5. (a) Please give a multiplication table for the ring $\mathbb{Z} / 12 \mathbb{Z}$.
(b) List all units in the ring $\mathbb{Z} / 12 \mathbb{Z}$.
(c) List all zero divisors in the ring $\mathbb{Z} / 12 \mathbb{Z}$.
6. (a) It is a fact that $(7,23)=1$. Give an integer solution to the equation $7 x+23 y=1$.
(b) It is also a fact that the equivalence class of 7 in $\mathbb{Z} / 23 \mathbb{Z}$ is a unit. Please give any representative for the class that is its multiplicative inverse. In other words, please give any integer v such that

$$
7 v \equiv 1 \quad(\bmod 23)
$$

Hint: Consider part (a), and in particular the whole equation modulo 23.
Extra problem for graduate credit:
7. Let k, m and x be integers. Show that for $k>0$ and $m \geq 1, x \equiv 1\left(\bmod m^{k}\right)$ implies that $x^{m} \equiv 1\left(\bmod m^{k+1}\right)$.

