
Math 255 - Spring 2018
Homework 6 Solutions

1. We first let m = 1. In that case, Lemma 6 says that if p|a1, then p|ai for 1  i  1, or
in other words that p|a1. This is exactly what we assume so it is true.

(It turns out that there is no need to do m = 2 separately since the induction step will
take care of it. Therefore we don’t.)

Now let k � 2, and assume by induction that Lemma 6 is true for m = k� 1. In other
words, assume that if a1, . . . ak�1 are integers and p divides the product a1 · · · ak�1,
then p|ai for some 1  i  k � 1.

Now consider k integers a1, . . . ak, and assume that p divides the product a1 · · · ak. By
associativity, we can write this product as

a1 · · · ak = (a1 · · · ak�1) · ak,

and a1 · · · ak�1 is itself one integer. Since p is prime and p divides the product of
a1 · · · ak�1 and ak, p must either divide a1 · · · ak�1 or p divides ak. If p divides ak, we
are done, because in that case p|ai for i = k.

If p divides a1 · · · ak�1, then by induction p divides ai for some 1  i  k � 1. In that
case we are done as well, and the lemma is proved by induction.

2. Since n > 1 in this Lemma, the base case is n = 2. We know that 2 is prime, and
therefore it is a product of primes (only one prime, but that still counts).

We now fix k, and assume by (strong) induction that Lemma 2 is true for all integers
2, 3, . . . , k � 1. In other words the integers 2, 3, . . . , k � 1 are all products of primes.

Consider now n = k. We know by Lemma 1 that k is divisible by a prime. Write
k = p`, where p is prime and ` is an integer. Since p > 1 (because it is prime), it
follows that 1  ` < k. If ` = 1, we are done because k is prime and therefore a
product of primes.

If 1 < ` < k, then by strong induction ` is a product of primes, say ` = p1p2 · · · pr for
some r. Then k = pp1p2 · · · pr is also a product of primes, and the lemma is proved by
induction.

3. (a) Since
p
200 ⇡ 14.14, it su�ces to check all of the multiples of all of the primes

less than or equal to N = 15 (we must round up to be safe, since 142 = 196). In
other words, once we have crossed out the multiples of 13, all remaining integers
on the grid will be prime.

(b) For this problem please see the grid on the last page of these solutions.

4. If p > n1/3, then 1
p < 1

n1/3 , from which it follows that n
p < n

n1/3 = n2/3.

For simplicity, write d = n
p ; this is an integer since p divides n. Suppose further by way

of contradiction that d is not prime. In that case, by Lemma 4, d has a prime divisor,
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let’s call it q, that is less than or equal to d1/2. Since we have d < n2/3, it follows that
q < (n2/3)1/2 = n1/3.

We now note that since q divides d and d divides n, by Exercise 2 of Section 1, q
divides n. Therefore q is a prime factor of n that is strictly less than n1/3. But p was
the smallest prime divisor of n, and it was greater than n1/3, so this is a contradiction.

5. We first note that for any n, by the geometric sum formula, we have

2n � 1 =
n�1X

k=0

2k = 2n�1 + 2n�2 + · · ·+ 4 + 2 + 1.

We will show that if n is composite we can always factor the sum on the right.

Suppose that n is composite. In that case there are integers a and b with 1 < a  b < n
such that n = ab. Then the sum

Pn�1
k=0 2

k has n = ab terms, which can be “split up”
in the following way:

n�1X

k=0

2k = 2n�1 + 2n�2 + · · ·+ 4 + 2 + 1

= (2ab�1 + 2ab�2 + · · ·+ 2(a�1)b+1 + 2(a�1)b) + · · ·
+ (22b�1 + 22b�2 + · · ·+ 2b+1 + 2b) + (2b�1 + 2b�2 + · · ·+ 2 + 1)

=
a�1X

k=0

b�1X

j=0

2bk+j.

We note that term in the “split up” sum factors as

b�1X

j=0

2bk+j = 2bk
b�1X

j=0

2j.

Therefore if we factor by grouping, we get that

n�1X

k=0

2k =
a�1X

k=0

b�1X

j=0

2bk+j

=
a�1X

k=0

 
2bk

b�1X

j=0

2j

!

=
a�1X

k=0

2bk ·
b�1X

j=0

2j.
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To prove that 2n � 1 is composite, it now su�ces to show that neither of these two
sums is 1. Since they are each sums of positive integers, it su�ces to show that neither
is a sum containing only the single term 1. Since both a and b are strictly greater than
1, each sum always contains at least two terms (the terms where k = 0 and where
k = 1) and therefore each sum is at least 2. This gives a non-trivial factorization of
2n � 1 when n is composite, which proves that 2n � 1 is itself composite.

The converse, however, is not true. If p = 11, then 211 � 1 = 2047 = 23 · 89.
Much simpler proof provided by a student, but uses modular arithmetic: Let
n be a composite number. By definition, there exist integers a and b with 1 < a  b < n
such that n = ab.

We first prove that 2b � 1 divides 2n � 1, by proving that 2n � 1 ⌘ 0 (mod 2b � 1).
(Note that this is also what the other proof ended up showing, since 2b�1 =

Pb�1
j=0 2

j.)

To do this, we begin by noting that 2b� 1 ⌘ 0 (mod 2b� 1), since 2b� 1 divides itself.
Therefore, by Lemma 1, part d), we have that 2b ⌘ 1 (mod 2b � 1).

Now using Lemma 1, part e) repeatedly, we can show that

2n = (2b)a ⌘ 1a = 1 (mod 2b � 1),

which simplifies to saying that 2n ⌘ 1 (mod 2b � 1). Again using Lemma 1 part d),
we may write

2n � 1 ⌘ 0 (mod 2b � 1),

which proves that 2b � 1 divides 2n � 1.

To conclude that 2n � 1 is composite, it now su�ces to show that 2b � 1 is not 1 or
2n�1. To prove the first assertion, it su�ces to note that we have assumed that b � 2,
since n is composite, and therefore 2b�1 � 3. To prove the second assertion, we notice
that we assumed that b < n. Therefore 2n � 1 has a non-trivial divisor and it is not
prime.
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