1. We first let $m=1$. In that case, Lemma 6 says that if $p \mid a_{1}$, then $p \mid a_{i}$ for $1 \leq i \leq 1$, or in other words that $p \mid a_{1}$. This is exactly what we assume so it is true.
(It turns out that there is no need to do $m=2$ separately since the induction step will take care of it. Therefore we don't.)
Now let $k \geq 2$, and assume by induction that Lemma 6 is true for $m=k-1$. In other words, assume that if $a_{1}, \ldots a_{k-1}$ are integers and p divides the product $a_{1} \cdots a_{k-1}$, then $p \mid a_{i}$ for some $1 \leq i \leq k-1$.
Now consider k integers $a_{1}, \ldots a_{k}$, and assume that p divides the product $a_{1} \cdots a_{k}$. By associativity, we can write this product as

$$
a_{1} \cdots a_{k}=\left(a_{1} \cdots a_{k-1}\right) \cdot a_{k},
$$

and $a_{1} \cdots a_{k-1}$ is itself one integer. Since p is prime and p divides the product of $a_{1} \cdots a_{k-1}$ and a_{k}, p must either divide $a_{1} \cdots a_{k-1}$ or p divides a_{k}. If p divides a_{k}, we are done, because in that case $p \mid a_{i}$ for $i=k$.
If p divides $a_{1} \cdots a_{k-1}$, then by induction p divides a_{i} for some $1 \leq i \leq k-1$. In that case we are done as well, and the lemma is proved by induction.
2. Since $n>1$ in this Lemma, the base case is $n=2$. We know that 2 is prime, and therefore it is a product of primes (only one prime, but that still counts).
We now fix k, and assume by (strong) induction that Lemma 2 is true for all integers $2,3, \ldots, k-1$. In other words the integers $2,3, \ldots, k-1$ are all products of primes.
Consider now $n=k$. We know by Lemma 1 that k is divisible by a prime. Write $k=p \ell$, where p is prime and ℓ is an integer. Since $p>1$ (because it is prime), it follows that $1 \leq \ell<k$. If $\ell=1$, we are done because k is prime and therefore a product of primes.
If $1<\ell<k$, then by strong induction ℓ is a product of primes, say $\ell=p_{1} p_{2} \cdots p_{r}$ for some r. Then $k=p p_{1} p_{2} \cdots p_{r}$ is also a product of primes, and the lemma is proved by induction.
3. (a) Since $\sqrt{200} \approx 14.14$, it suffices to check all of the multiples of all of the primes less than or equal to $N=15$ (we must round up to be safe, since $14^{2}=196$). In other words, once we have crossed out the multiples of 13 , all remaining integers on the grid will be prime.
(b) For this problem please see the grid on the last page of these solutions.
4. If $p>n^{1 / 3}$, then $\frac{1}{p}<\frac{1}{n^{1 / 3}}$, from which it follows that $\frac{n}{p}<\frac{n}{n^{1 / 3}}=n^{2 / 3}$.

For simplicity, write $d=\frac{n}{p}$; this is an integer since p divides n. Suppose further by way of contradiction that d is not prime. In that case, by Lemma $4, d$ has a prime divisor,
let's call it q, that is less than or equal to $d^{1 / 2}$. Since we have $d<n^{2 / 3}$, it follows that $q<\left(n^{2 / 3}\right)^{1 / 2}=n^{1 / 3}$.
We now note that since q divides d and d divides n, by Exercise 2 of Section $1, q$ divides n. Therefore q is a prime factor of n that is strictly less than $n^{1 / 3}$. But p was the smallest prime divisor of n, and it was greater than $n^{1 / 3}$, so this is a contradiction.
5. We first note that for any n, by the geometric sum formula, we have

$$
2^{n}-1=\sum_{k=0}^{n-1} 2^{k}=2^{n-1}+2^{n-2}+\cdots+4+2+1
$$

We will show that if n is composite we can always factor the sum on the right.
Suppose that n is composite. In that case there are integers a and b with $1<a \leq b<n$ such that $n=a b$. Then the sum $\sum_{k=0}^{n-1} 2^{k}$ has $n=a b$ terms, which can be "split up" in the following way:

$$
\begin{aligned}
\sum_{k=0}^{n-1} 2^{k}= & 2^{n-1}+2^{n-2}+\cdots+4+2+1 \\
= & \left(2^{a b-1}+2^{a b-2}+\cdots+2^{(a-1) b+1}+2^{(a-1) b}\right)+\cdots \\
& +\left(2^{2 b-1}+2^{2 b-2}+\cdots+2^{b+1}+2^{b}\right)+\left(2^{b-1}+2^{b-2}+\cdots+2+1\right) \\
= & \sum_{k=0}^{a-1} \sum_{j=0}^{b-1} 2^{b k+j}
\end{aligned}
$$

We note that term in the "split up" sum factors as

$$
\sum_{j=0}^{b-1} 2^{b k+j}=2^{b k} \sum_{j=0}^{b-1} 2^{j}
$$

Therefore if we factor by grouping, we get that

$$
\begin{aligned}
\sum_{k=0}^{n-1} 2^{k} & =\sum_{k=0}^{a-1} \sum_{j=0}^{b-1} 2^{b k+j} \\
& =\sum_{k=0}^{a-1}\left(2^{b k} \sum_{j=0}^{b-1} 2^{j}\right) \\
& =\sum_{k=0}^{a-1} 2^{b k} \cdot \sum_{j=0}^{b-1} 2^{j}
\end{aligned}
$$

To prove that $2^{n}-1$ is composite, it now suffices to show that neither of these two sums is 1 . Since they are each sums of positive integers, it suffices to show that neither is a sum containing only the single term 1 . Since both a and b are strictly greater than 1 , each sum always contains at least two terms (the terms where $k=0$ and where $k=1$) and therefore each sum is at least 2 . This gives a non-trivial factorization of $2^{n}-1$ when n is composite, which proves that $2^{n}-1$ is itself composite.
The converse, however, is not true. If $p=11$, then $2^{11}-1=2047=23 \cdot 89$.
Much simpler proof provided by a student, but uses modular arithmetic: Let n be a composite number. By definition, there exist integers a and b with $1<a \leq b<n$ such that $n=a b$.
We first prove that $2^{b}-1$ divides $2^{n}-1$, by proving that $2^{n}-1 \equiv 0\left(\bmod 2^{b}-1\right)$. (Note that this is also what the other proof ended up showing, since $2^{b}-1=\sum_{j=0}^{b-1} 2^{j}$.)
To do this, we begin by noting that $2^{b}-1 \equiv 0\left(\bmod 2^{b}-1\right)$, since $2^{b}-1$ divides itself. Therefore, by Lemma 1 , part d), we have that $2^{b} \equiv 1\left(\bmod 2^{b}-1\right)$.
Now using Lemma 1, part e) repeatedly, we can show that

$$
2^{n}=\left(2^{b}\right)^{a} \equiv 1^{a}=1 \quad\left(\bmod 2^{b}-1\right)
$$

which simplifies to saying that $2^{n} \equiv 1\left(\bmod 2^{b}-1\right)$. Again using Lemma 1 part d), we may write

$$
2^{n}-1 \equiv 0 \quad\left(\bmod 2^{b}-1\right)
$$

which proves that $2^{b}-1$ divides $2^{n}-1$.
To conclude that $2^{n}-1$ is composite, it now suffices to show that $2^{b}-1$ is not 1 or $2^{n}-1$. To prove the first assertion, it suffices to note that we have assumed that $b \geq 2$, since n is composite, and therefore $2^{b}-1 \geq 3$. To prove the second assertion, we notice that we assumed that $b<n$. Therefore $2^{n}-1$ has a non-trivial divisor and it is not prime.

	2	3	4	5	6	7	8	ρ	10
(11)	$1 / 2$	13	14	1fo	$1{ }^{16}$	17	18	19	26
21	22	23	24	25	26	27	28	29	36
31	32	33	34	35	36	37	38	39	40
41)	42	43	44	45	46	47	48	49	¢0
51	52	53	\$4	55	56	5p/	\$8	59	60
(61)	62	63	64	65	66	67	68	69	70
71.	72	73	74	75	76	77	78	79	86
\$1	82	83	84	85	86	87	88	89	90
91	92	93	94	9,5	96	97	98	99	$1 \not 00$
101	102	103	104	105	$1 \chi^{6} 6$	107	108	109	$1 / 10$
111	112	113	11/4	11/5	176	$11 / 7$	1/8	119	$1 / 20$
121	122	123	124	125	126	127	128	129	$1 \beta 0$
131	132	133	134	136	$1 \not 26$	(137)	138	139	140
141	142	143	144	145	146	147	148	149	$1 p 0$
151	$1 \not{ }^{2} 2$	1,53	$15 / 4$	$1 \$ 5$	156	157	1p8	159	160
$1 / 61$	162	163	164	165	166	167	168	169	$1 / 70$
171	172	173	$17 / 4$	175	176	177	178	179	180
181	182	183	184	185	186	187	1\%8	189	190
191	192	193	194	195	196	197	198	199	200

