Math 255 - Spring 2018 Homework 6 Solutions

1. We first let m = 1. In that case, Lemma 6 says that if $p|a_1$, then $p|a_i$ for $1 \le i \le 1$, or in other words that $p|a_1$. This is exactly what we assume so it is true.

(It turns out that there is no need to do m = 2 separately since the induction step will take care of it. Therefore we don't.)

Now let $k \ge 2$, and assume by induction that Lemma 6 is true for m = k - 1. In other words, assume that if $a_1, \ldots a_{k-1}$ are integers and p divides the product $a_1 \cdots a_{k-1}$, then $p|a_i$ for some $1 \le i \le k - 1$.

Now consider k integers $a_1, \ldots a_k$, and assume that p divides the product $a_1 \cdots a_k$. By associativity, we can write this product as

$$a_1 \cdots a_k = (a_1 \cdots a_{k-1}) \cdot a_k,$$

and $a_1 \cdots a_{k-1}$ is itself one integer. Since p is prime and p divides the product of $a_1 \cdots a_{k-1}$ and a_k , p must either divide $a_1 \cdots a_{k-1}$ or p divides a_k . If p divides a_k , we are done, because in that case $p|a_i$ for i = k.

If p divides $a_1 \cdots a_{k-1}$, then by induction p divides a_i for some $1 \le i \le k-1$. In that case we are done as well, and the lemma is proved by induction.

2. Since n > 1 in this Lemma, the base case is n = 2. We know that 2 is prime, and therefore it is a product of primes (only one prime, but that still counts).

We now fix k, and assume by (strong) induction that Lemma 2 is true for all integers $2, 3, \ldots, k-1$. In other words the integers $2, 3, \ldots, k-1$ are all products of primes.

Consider now n = k. We know by Lemma 1 that k is divisible by a prime. Write $k = p\ell$, where p is prime and ℓ is an integer. Since p > 1 (because it is prime), it follows that $1 \leq \ell < k$. If $\ell = 1$, we are done because k is prime and therefore a product of primes.

If $1 < \ell < k$, then by strong induction ℓ is a product of primes, say $\ell = p_1 p_2 \cdots p_r$ for some r. Then $k = pp_1 p_2 \cdots p_r$ is also a product of primes, and the lemma is proved by induction.

- 3. (a) Since $\sqrt{200} \approx 14.14$, it suffices to check all of the multiples of all of the primes less than or equal to N = 15 (we must round up to be safe, since $14^2 = 196$). In other words, once we have crossed out the multiples of 13, all remaining integers on the grid will be prime.
 - (b) For this problem please see the grid on the last page of these solutions.

4. If $p > n^{1/3}$, then $\frac{1}{p} < \frac{1}{n^{1/3}}$, from which it follows that $\frac{n}{p} < \frac{n}{n^{1/3}} = n^{2/3}$. For simplicity, write $d = \frac{n}{p}$; this is an integer since p divides n. Suppose further by way of contradiction that d is not prime. In that case, by Lemma 4, d has a prime divisor, let's call it q, that is less than or equal to $d^{1/2}$. Since we have $d < n^{2/3}$, it follows that $q < (n^{2/3})^{1/2} = n^{1/3}$.

We now note that since q divides d and d divides n, by Exercise 2 of Section 1, q divides n. Therefore q is a prime factor of n that is strictly less than $n^{1/3}$. But p was the smallest prime divisor of n, and it was greater than $n^{1/3}$, so this is a contradiction.

5. We first note that for any n, by the geometric sum formula, we have

$$2^{n} - 1 = \sum_{k=0}^{n-1} 2^{k} = 2^{n-1} + 2^{n-2} + \dots + 4 + 2 + 1.$$

We will show that if n is composite we can always factor the sum on the right.

Suppose that n is composite. In that case there are integers a and b with $1 < a \le b < n$ such that n = ab. Then the sum $\sum_{k=0}^{n-1} 2^k$ has n = ab terms, which can be "split up" in the following way:

$$\sum_{k=0}^{n-1} 2^k = 2^{n-1} + 2^{n-2} + \dots + 4 + 2 + 1$$

= $(2^{ab-1} + 2^{ab-2} + \dots + 2^{(a-1)b+1} + 2^{(a-1)b}) + \dots$
+ $(2^{2b-1} + 2^{2b-2} + \dots + 2^{b+1} + 2^b) + (2^{b-1} + 2^{b-2} + \dots + 2 + 1)$
= $\sum_{k=0}^{a-1} \sum_{j=0}^{b-1} 2^{bk+j}$.

We note that term in the "split up" sum factors as

$$\sum_{j=0}^{b-1} 2^{bk+j} = 2^{bk} \sum_{j=0}^{b-1} 2^j.$$

Therefore if we factor by grouping, we get that

$$\sum_{k=0}^{n-1} 2^k = \sum_{k=0}^{a-1} \sum_{j=0}^{b-1} 2^{bk+j}$$
$$= \sum_{k=0}^{a-1} \left(2^{bk} \sum_{j=0}^{b-1} 2^j \right)$$
$$= \sum_{k=0}^{a-1} 2^{bk} \cdot \sum_{j=0}^{b-1} 2^j.$$

To prove that $2^n - 1$ is composite, it now suffices to show that neither of these two sums is 1. Since they are each sums of positive integers, it suffices to show that neither is a sum containing only the single term 1. Since both a and b are strictly greater than 1, each sum always contains at least two terms (the terms where k = 0 and where k = 1) and therefore each sum is at least 2. This gives a non-trivial factorization of $2^n - 1$ when n is composite, which proves that $2^n - 1$ is itself composite.

The converse, however, is not true. If p = 11, then $2^{11} - 1 = 2047 = 23 \cdot 89$.

Much simpler proof provided by a student, but uses modular arithmetic: Let n be a composite number. By definition, there exist integers a and b with $1 < a \le b < n$ such that n = ab.

We first prove that $2^b - 1$ divides $2^n - 1$, by proving that $2^n - 1 \equiv 0 \pmod{2^b - 1}$. (Note that this is also what the other proof ended up showing, since $2^b - 1 = \sum_{i=0}^{b-1} 2^i$.)

To do this, we begin by noting that $2^b - 1 \equiv 0 \pmod{2^b - 1}$, since $2^b - 1$ divides itself. Therefore, by Lemma 1, part d), we have that $2^b \equiv 1 \pmod{2^b - 1}$.

Now using Lemma 1, part e) repeatedly, we can show that

$$2^{n} = (2^{b})^{a} \equiv 1^{a} = 1 \pmod{2^{b} - 1},$$

which simplifies to saying that $2^n \equiv 1 \pmod{2^b - 1}$. Again using Lemma 1 part d), we may write

$$2^n - 1 \equiv 0 \pmod{2^b - 1},$$

which proves that $2^b - 1$ divides $2^n - 1$.

To conclude that $2^n - 1$ is composite, it now suffices to show that $2^b - 1$ is not 1 or $2^n - 1$. To prove the first assertion, it suffices to note that we have assumed that $b \ge 2$, since n is composite, and therefore $2^b - 1 \ge 3$. To prove the second assertion, we notice that we assumed that b < n. Therefore $2^n - 1$ has a non-trivial divisor and it is not prime.

	2	3	A	5	ø	7	\$	ø	10
	1/2	13	1/4	1,5	16	17	18	19	20
2 /1	<mark>2</mark> /2	23	2/4	2/5	26	2/7	28	29	30
31	3/2	3 <mark>/</mark> 3	3/4	35	36	37	38	3/9	40
41	4/2	43	44	45	4 6	47	48	49	\$ 0
51	5/2	53	5 4	55	56	5/7	\$ 8	59	ø0
61	6/2	63	·6 <mark>/</mark> 4	65	66	67	68	69	7 0
71	7/2	73	7/4	75	76	77	7/8	79	80
\$ 1	8/2	83	84	85	86	87	88	89	9 0
% 1	92	93	94	9 <mark>5</mark>	96	97	9 <mark>8</mark>	99	100
101	102	103	104	105	106	107	108	109	1 <mark>/</mark> 10
1/1	1/2	113	11/4	115	116	1/7	1/18	1,19	1/20
121	12/2	1,23	12/4	12/5	126	127	12/8	129	180
131	13/2	13/3	134	135	186	137	13/8	139	140
141	142	143	144	145	146	1/17	148	149	1 <mark>\$</mark> 0
151	1 2	153	15/4	155	156	157	1 <mark>6</mark> 8	159	160
161	1 <mark>6</mark> 2	163	16 <mark>4</mark>	165	1 <mark>6</mark> 6	167	1 <mark>6</mark> 8	169	1/70
1/1	172	173	17/4	175	176	1/77	178	179	1/80
181	182	183	18 <mark>4</mark>	185	186	187	188	189	19 0
191	192	193	194	195	196	197	198	199	200

,