Math 255 - Spring 2018
Homework 5 Solutions

1. It might be obvious that $(23,14)=1$, and therefore by Theorem 1 of Section 3, this equation has integer solutions (since 1 divides 2).

We begin by using the Euclidean Algorithm to find integer solutions x_{0}, y_{0} to the equation $23 x_{0}+14 y_{0}=1$: We begin with

$$
\begin{aligned}
23 & =14+9 \\
14 & =9+5 \\
9 & =5+4 \\
5 & =4+1 \\
4 & =4 \cdot 1 .
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
& 1=5-4 \\
& 4=9-5 \\
& 5=14-9 \\
& 9=23-14 .
\end{aligned}
$$

Back-substituting, we get

$$
\begin{aligned}
1 & =5-4 \\
& =5-(9-5) \\
& =5-9+5 \\
& =2 \cdot 5-9 \\
& =2 \cdot(14-9)-9 \\
& =2 \cdot 14-2 \cdot 9-9 \\
& =2 \cdot 14-3 \cdot 9 \\
& =2 \cdot 14-3 \cdot(23-14) \\
& =2 \cdot 14-3 \cdot 23+3 \cdot 14 \\
& =5 \cdot 14-3 \cdot 23 .
\end{aligned}
$$

From this we obtain the solution $x_{0}=-3$ and $y_{0}=5$ to the equation $23 x_{0}+14 y_{0}=1$ (which we note is NOT the equation we are trying to solve!)
Since $2=2 \cdot 1$, we can multiply both sides of $23 \cdot(-3)+14 \cdot 5=1$ by 2 to obtain

$$
2(23 \cdot(-3)+14 \cdot 5)=2
$$

or, using distributivity and commutativity,

$$
23 \cdot(-6)+14 \cdot 10=2
$$

which gives us the particular solution $x_{p}=-6$ and $y_{p}=10$ to the equation $23 x+14 y=$ 2 (and this IS the equation we are trying to solve!)
Now it remains to apply Theorem 1 of Section 3 , with $a=23, b=14$ and $(a, b)=1$ to write that all integer solutions are given by

$$
\begin{aligned}
& x=-6+14 t \\
& y=10-23 t
\end{aligned}
$$

with t ranging over all integers.
2. In this problem, let x be the number of calves bought by the farmer, y be the number of lambs bought by the farmer, and z be the number of piglets bought by the farmer. Note that x, y and z are all positive integers since the farmer buys at least one animal of each species.
Translating the problem into math gives us the equations

$$
x+y+z=100
$$

and

$$
120 x+50 y+25 z=4000
$$

Substituting $z=100-x-y$ into the second equation, we obtain

$$
95 x+25 y=1500
$$

which is an equation of the type we have been studying, and for which we can therefore find all positive integer solutions.
We first use the Euclidean algorithm to determine $(95,25)$ and ascertain that it divides 1500: We have

$$
\begin{aligned}
& 95=25 \cdot 3+20 \\
& 25=20+5 \\
& 20=5 \cdot 4
\end{aligned}
$$

Therefore $(95,25)=5$, and since 5 does divide 1500 , there will be integer solutions to this equation.
We now back-substitute to solve the equation $95 x_{0}+25 y_{0}=5$:

$$
\begin{aligned}
5 & =25-20 \\
& =25-(95-3 \cdot 25) \\
& =25-95+3 \cdot 25 \\
& =4 \cdot 25-95 .
\end{aligned}
$$

This gives us the solution $x_{0}=-1$ and $y_{0}=4$, but we stress that this is for the equation $95 x_{0}+25 y_{0}=5$, which is not the equation we are trying to solve.

We now multiply each side by 300 to obtain a particular solution to the equation we do care about: First we get

$$
300(4 \cdot 25-95)=1500
$$

and using distributivity and commutativity we get

$$
25 \cdot 1200+95 \cdot(-300)=1500
$$

Therefore we have the particular solutions $x_{p}=-300$ and $y_{p}=1200$ to the equation $95 x+25 y=1500$.

To get all solutions that are positive integers, we first write down all solutions using Theorem 1 of Section 3, with $a=95, b=25$ and $(a, b)=5$. This gives us the solutions

$$
\begin{aligned}
& x=-300+5 t \\
& y=1200-19 t
\end{aligned}
$$

with $t \in \mathbb{Z}$.
To find the positive solutions we solve

$$
-300+5 t>0 \quad \text { and } \quad 1200-19 t>0
$$

The first equation gives us $t>60$, and the second equation gives us $t<\frac{1200}{19} \approx 63.15$. Therefore the possibilities for t, if t is to be an integer, are $t=61,62$, and 63 .
To finally answer the problem, we recall that there was a third variable z, and that this variable should also be positive. Therefore we obtain the pairs (x, y) associated to each t, and compute the associated z using $z=100-x-y$.
If $t=61$, then $x=-300+305=5$ and $y=1200-1159=41$, and $z=100-5-41=54$. This is an acceptable answer.
If $t=62$, then $x=-300+310=10$ and $y=1200-1178=22$, and $z=100-10-22=$ 68. This is also an acceptable answer.

It $t=63$, then $x=-300+315=15$ and $y=1200-1197=3$, and $z=100-15-3=82$. This is also an acceptable answer.
(Note that it is a coincidence that these all give acceptable values of z; there very well could have been a pair (x, y) giving a negative value of z if the numbers had turned out differently.)
Therefore the farmer either bought 5 calves, 41 lambs and 54 piglets; or 10 calves, 22 lambs and 68 piglets; or 15 calves, 3 lambs and 82 piglets.
3. Since n is a composite number, there exist integers d_{1} and d_{2} with $1<d_{1} \leq d_{2}<n$ and $n=d_{1} d_{2}$ (in other words, n has divisors other than 1 and itself). There are two possibilities: Either $d_{1} \neq d_{2}$, or $d_{1}=d_{2}$. We tackle each possibility in turn and show that n divides $(n-1)$! in either case.

If $d_{1} \neq d_{2}$, then the product $(n-1)$! contains both the integer d_{1} and the integer d_{2} as separate factors (since they are distinct, positive, and both less than or equal to $n-1$). Therefore since the rest of the product is an integer, $n=d_{1} d_{2}$ divides $(n-1)$!.
If $d_{1}=d_{2}$, this argument does not work (and there are composite integers $n>4$ for which this is the only option: $n=p^{2}$ for p a prime). For simplicity let's write $n=d^{2}$, with $1<d<n$.
Since $n>4$, then $d>2$. To find the other factor of d inside $(n-1)$!, consider the integer $2 d$. Since $d>2$, it follows that $d^{2}>2 d$, and since $n=d^{2}$, then $n>2 d$. Therefore d and $2 d$ are two distinct integers contained strictly between 1 and n, and therefore they both appear separately in the product $(n-1)$!. By an argument similar to the one above, we conclude that $d \cdot 2 d=2 d^{2}$ divides $(n-1)$!. Since $n=d^{2}$ divides $2 d^{2}$, by Exercise 2 in Section 1, we may conclude that n divides $(n-1)$!.
Note that if $n=4$ (which is the only composite number not covered by this problem), then the conclusion is false: $(4-1)!=3!=6$ and 4 does not divide 6 . Therefore it is absolutely necessary for the argument to work that $d>2$; otherwise there is not enough "space" for both d and $2 d$ to be strictly between 1 and n.
4. Let us first establish the following: If both p and q are greater than $n^{1 / 4}$ then $p q>n^{1 / 2}$, and therefore $\frac{n}{p q}<\frac{n}{n^{1 / 2}}=n^{1 / 2}$. Therefore $\frac{n}{p q}$ is a small factor of n.
Therefore the question roughly asks if an integer n having large prime factors affects whether its small factors are prime. The assertion as stated is false: The large prime factors of an integer n do not affect the small factors.

We now attempt to build a counter-example. Let $p=7$ and $q=11$, so these are relatively large. Then let $\frac{n}{p q}=6$, so that it is small but not prime. Then $n=6 \cdot 7 \cdot 11=$ 462 , and $n^{1 / 4} \approx 4.63$. Then both p and q are greater than $n^{1 / 4}$, as required, and $\frac{n}{p q}=6$ is not prime, therefore disproving the assertion.

