
Math 255 - Spring 2018
Homework 5 Solutions

1. It might be obvious that (23, 14) = 1, and therefore by Theorem 1 of Section 3, this
equation has integer solutions (since 1 divides 2).

We begin by using the Euclidean Algorithm to find integer solutions x0, y0 to the
equation 23x0 + 14y0 = 1: We begin with

23 = 14 + 9

14 = 9 + 5

9 = 5 + 4

5 = 4 + 1

4 = 4 · 1.

Therefore we have

1 = 5− 4

4 = 9− 5

5 = 14− 9

9 = 23− 14.

Back-substituting, we get

1 = 5− 4

= 5− (9− 5)

= 5− 9 + 5

= 2 · 5− 9

= 2 · (14− 9)− 9

= 2 · 14− 2 · 9− 9

= 2 · 14− 3 · 9
= 2 · 14− 3 · (23− 14)

= 2 · 14− 3 · 23 + 3 · 14

= 5 · 14− 3 · 23.

From this we obtain the solution x0 = −3 and y0 = 5 to the equation 23x0 + 14y0 = 1
(which we note is NOT the equation we are trying to solve!)

Since 2 = 2 · 1, we can multiply both sides of 23 · (−3) + 14 · 5 = 1 by 2 to obtain

2(23 · (−3) + 14 · 5) = 2,
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or, using distributivity and commutativity,

23 · (−6) + 14 · 10 = 2,

which gives us the particular solution xp = −6 and yp = 10 to the equation 23x+14y =
2 (and this IS the equation we are trying to solve!)

Now it remains to apply Theorem 1 of Section 3, with a = 23, b = 14 and (a, b) = 1 to
write that all integer solutions are given by

x = −6 + 14t

y = 10− 23t,

with t ranging over all integers.

2. In this problem, let x be the number of calves bought by the farmer, y be the number
of lambs bought by the farmer, and z be the number of piglets bought by the farmer.
Note that x, y and z are all positive integers since the farmer buys at least one animal
of each species.

Translating the problem into math gives us the equations

x + y + z = 100

and
120x + 50y + 25z = 4000.

Substituting z = 100− x− y into the second equation, we obtain

95x + 25y = 1500,

which is an equation of the type we have been studying, and for which we can therefore
find all positive integer solutions.

We first use the Euclidean algorithm to determine (95, 25) and ascertain that it divides
1500: We have

95 = 25 · 3 + 20

25 = 20 + 5

20 = 5 · 4.

Therefore (95, 25) = 5, and since 5 does divide 1500, there will be integer solutions to
this equation.

We now back-substitute to solve the equation 95x0 + 25y0 = 5:

5 = 25− 20

= 25− (95− 3 · 25)

= 25− 95 + 3 · 25

= 4 · 25− 95.
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This gives us the solution x0 = −1 and y0 = 4, but we stress that this is for the
equation 95x0 + 25y0 = 5, which is not the equation we are trying to solve.

We now multiply each side by 300 to obtain a particular solution to the equation we
do care about: First we get

300(4 · 25− 95) = 1500,

and using distributivity and commutativity we get

25 · 1200 + 95 · (−300) = 1500.

Therefore we have the particular solutions xp = −300 and yp = 1200 to the equation
95x + 25y = 1500.

To get all solutions that are positive integers, we first write down all solutions using
Theorem 1 of Section 3, with a = 95, b = 25 and (a, b) = 5. This gives us the solutions

x = −300 + 5t

y = 1200− 19t,

with t ∈ Z.

To find the positive solutions we solve

−300 + 5t > 0 and 1200− 19t > 0.

The first equation gives us t > 60, and the second equation gives us t < 1200
19
≈ 63.15.

Therefore the possibilities for t, if t is to be an integer, are t = 61, 62, and 63.

To finally answer the problem, we recall that there was a third variable z, and that
this variable should also be positive. Therefore we obtain the pairs (x, y) associated to
each t, and compute the associated z using z = 100− x− y.

If t = 61, then x = −300+305 = 5 and y = 1200−1159 = 41, and z = 100−5−41 = 54.
This is an acceptable answer.

If t = 62, then x = −300+310 = 10 and y = 1200−1178 = 22, and z = 100−10−22 =
68. This is also an acceptable answer.

It t = 63, then x = −300+315 = 15 and y = 1200−1197 = 3, and z = 100−15−3 = 82.
This is also an acceptable answer.

(Note that it is a coincidence that these all give acceptable values of z; there very well
could have been a pair (x, y) giving a negative value of z if the numbers had turned
out differently.)

Therefore the farmer either bought 5 calves, 41 lambs and 54 piglets; or 10 calves, 22
lambs and 68 piglets; or 15 calves, 3 lambs and 82 piglets.
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3. Since n is a composite number, there exist integers d1 and d2 with 1 < d1 ≤ d2 < n
and n = d1d2 (in other words, n has divisors other than 1 and itself). There are two
possibilities: Either d1 6= d2, or d1 = d2. We tackle each possibility in turn and show
that n divides (n− 1)! in either case.

If d1 6= d2, then the product (n− 1)! contains both the integer d1 and the integer d2 as
separate factors (since they are distinct, positive, and both less than or equal to n−1).
Therefore since the rest of the product is an integer, n = d1d2 divides (n− 1)!.

If d1 = d2, this argument does not work (and there are composite integers n > 4 for
which this is the only option: n = p2 for p a prime). For simplicity let’s write n = d2,
with 1 < d < n.

Since n > 4, then d > 2. To find the other factor of d inside (n − 1)!, consider the
integer 2d. Since d > 2, it follows that d2 > 2d, and since n = d2, then n > 2d.
Therefore d and 2d are two distinct integers contained strictly between 1 and n, and
therefore they both appear separately in the product (n− 1)!. By an argument similar
to the one above, we conclude that d · 2d = 2d2 divides (n− 1)!. Since n = d2 divides
2d2, by Exercise 2 in Section 1, we may conclude that n divides (n− 1)!.

Note that if n = 4 (which is the only composite number not covered by this problem),
then the conclusion is false: (4 − 1)! = 3! = 6 and 4 does not divide 6. Therefore it
is absolutely necessary for the argument to work that d > 2; otherwise there is not
enough “space” for both d and 2d to be strictly between 1 and n.

4. Let us first establish the following: If both p and q are greater than n1/4 then pq > n1/2,
and therefore n

pq
< n

n1/2 = n1/2. Therefore n
pq

is a small factor of n.

Therefore the question roughly asks if an integer n having large prime factors affects
whether its small factors are prime. The assertion as stated is false: The large prime
factors of an integer n do not affect the small factors.

We now attempt to build a counter-example. Let p = 7 and q = 11, so these are
relatively large. Then let n

pq
= 6, so that it is small but not prime. Then n = 6 ·7 ·11 =

462, and n1/4 ≈ 4.63. Then both p and q are greater than n1/4, as required, and n
pq

= 6
is not prime, therefore disproving the assertion.
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