
Math 255 - Spring 2018
Homework 4 Solutions

1. We begin by collecting our definitions. Since c|ab, there is an integer s such that
ab = cs. Furthermore, since d is the greatest common divisor of c and a, we have:

• d divides c (so there is an integer t with c = dt) and d divides a (so there is an
integer r with a = dr), and

• whenever e|c and e|a, then e ≤ d.

(We now pause for a second to consider our goal: Our goal is to show that c divides
db, or in other words that there is an integer u such that db = cu. The plan is to go
from the equation ab = cs to this equation, somehow. Let’s see what must be true for
that to happen.

We begin by plugging a = dr into the equation ab = cs:

(dr)b = cs.

From this, it seems that if we could divide both sides by r and get s
r

to be an integer,
that would be our integer u and we would be done. Therefore our goal is to show that
r divides s, or in other words that there is an integer u such that s = ru.)

We begin by establishing that (r, t) = 1: Indeed, since r = a
d

and t = c
d
, where

d = (a, c), by Section 1, Theorem 1, we have that (r, t) =
(
a
d
, c
d

)
= 1.

We now plug in c = dt into the equation (dr)b = cs and get

(dr)b = (dt)s.

Dividing both sides by d, we obtain

rb = ts.

Therefore, r divides ts, since b is an integer. But (r, t) = 1, so we conclude that r|s.
Therefore we do have that there is an integer u with s = ru, and therefore plugging
this into the equation (dr)b = cs, we get

(dr)b = c(ru),

and dividing both sides by r yields db = cu with u an integer, from which it follows
that c divides db.

2. According to the Bonus Proposition from class, for each a it suffices to show that there
exist integers x and y such that

(2a + 1)x + (9a + 4)y = 1.
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One way to see if we can make this happen is to treat a as an indeterminate. If we can
solve the equation for x and y when a is an indeterminate, then by substituting each
value of a we will obtain values of x and y that satisfy the equation.

In that case, if a is an indeterminate, we may assume that a and 1 are linearly inde-
pendent and therefore we get the system of equations

2x + 9y = 0

x + 4y = 1,

where the first equation comes from equating the coefficient of a on each side and the
second equation comes from equating the constant term on each side. Substituting
x = 1− 4y into the first equation we get

2 + y = 0,

so y = −2 and x = 9.

Therefore, no matter what a is, there is always the integer solution x = 9 and y = −2
to the equation (2a + 1)x + (9a + 4)y = 1 (try it at home with some values of a!).
Therefore (2a + 1, 9a + 4) = 1.

3. Let’s do it.

We first do the Euclidean Algorithm:

299 = 247 + 52

247 = 52 · 4 + 39

52 = 39 + 13

39 = 13 · 3.

(We note that since (299, 247) = 13, there is indeed a solution!)

Next we solve for each remainder:

13 = 52− 39

39 = 247− 52 · 4
52 = 299− 247.

Finally we back-solve. We first plug the second equation into the first and collect like
terms:

13 = 52− (247− 52 · 4)

= 52− 247 + 4 · 52

= 5 · 52− 247.
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Now we plug the last equation into this equation:

13 = 5 · 52− 247

= 5 · (299− 247)− 247

= 5 · 299− 5 · 247− 247

= 5 · 299− 6 · 247.

This is what we wanted, this gives us the solution x = 5 and y = −6.

4. We note that since c | (a + b), there is r ∈ Z such that a + b = cr.

Suppose that (a, c) = d. Then there are s and t integers such that a = ds and c = dt.
Substituting this into the equation a + b = cr, we get

ds + b = dtr.

Solving for b, we get
b = dtr − ds = d(tr − s).

Since tr − s is an integer, d divides b. Therefore d is a common divisor of a and b.
However, by assumption (a, b) = 1, therefore d ≤ 1. Since d ≥ 1 since it is a greatest
common divisor, we may conclude that d = 1.

A similar argument, replacing the roles of a and b, shows that (b, c) = 1 as well.
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