1. We begin by collecting our definitions. Since $c \mid a b$, there is an integer s such that $a b=c s$. Furthermore, since d is the greatest common divisor of c and a, we have:

- d divides c (so there is an integer t with $c=d t$) and d divides a (so there is an integer r with $a=d r$), and
- whenever $e \mid c$ and $e \mid a$, then $e \leq d$.
(We now pause for a second to consider our goal: Our goal is to show that c divides $d b$, or in other words that there is an integer u such that $d b=c u$. The plan is to go from the equation $a b=c s$ to this equation, somehow. Let's see what must be true for that to happen.
We begin by plugging $a=d r$ into the equation $a b=c s$:

$$
(d r) b=c s
$$

From this, it seems that if we could divide both sides by r and get $\frac{s}{r}$ to be an integer, that would be our integer u and we would be done. Therefore our goal is to show that r divides s, or in other words that there is an integer u such that $s=r u$.)
We begin by establishing that $(r, t)=1$: Indeed, since $r=\frac{a}{d}$ and $t=\frac{c}{d}$, where $d=(a, c)$, by Section 1, Theorem 1, we have that $(r, t)=\left(\frac{a}{d}, \frac{c}{d}\right)=1$.
We now plug in $c=d t$ into the equation $(d r) b=c s$ and get

$$
(d r) b=(d t) s
$$

Dividing both sides by d, we obtain

$$
r b=t s
$$

Therefore, r divides $t s$, since b is an integer. But $(r, t)=1$, so we conclude that $r \mid s$.
Therefore we do have that there is an integer u with $s=r u$, and therefore plugging this into the equation $(d r) b=c s$, we get

$$
(d r) b=c(r u)
$$

and dividing both sides by r yields $d b=c u$ with u an integer, from which it follows that c divides $d b$.
2. According to the Bonus Proposition from class, for each a it suffices to show that there exist integers x and y such that

$$
(2 a+1) x+(9 a+4) y=1
$$

One way to see if we can make this happen is to treat a as an indeterminate. If we can solve the equation for x and y when a is an indeterminate, then by substituting each value of a we will obtain values of x and y that satisfy the equation.
In that case, if a is an indeterminate, we may assume that a and 1 are linearly independent and therefore we get the system of equations

$$
\begin{aligned}
2 x+9 y & =0 \\
x+4 y & =1
\end{aligned}
$$

where the first equation comes from equating the coefficient of a on each side and the second equation comes from equating the constant term on each side. Substituting $x=1-4 y$ into the first equation we get

$$
2+y=0
$$

so $y=-2$ and $x=9$.
Therefore, no matter what a is, there is always the integer solution $x=9$ and $y=-2$ to the equation $(2 a+1) x+(9 a+4) y=1$ (try it at home with some values of $a!$). Therefore $(2 a+1,9 a+4)=1$.
3. Let's do it.

We first do the Euclidean Algorithm:

$$
\begin{aligned}
299 & =247+52 \\
247 & =52 \cdot 4+39 \\
52 & =39+13 \\
39 & =13 \cdot 3 .
\end{aligned}
$$

(We note that since $(299,247)=13$, there is indeed a solution!)
Next we solve for each remainder:

$$
\begin{aligned}
& 13=52-39 \\
& 39=247-52 \cdot 4 \\
& 52=299-247
\end{aligned}
$$

Finally we back-solve. We first plug the second equation into the first and collect like terms:

$$
\begin{aligned}
13 & =52-(247-52 \cdot 4) \\
& =52-247+4 \cdot 52 \\
& =5 \cdot 52-247 .
\end{aligned}
$$

Now we plug the last equation into this equation:

$$
\begin{aligned}
13 & =5 \cdot 52-247 \\
& =5 \cdot(299-247)-247 \\
& =5 \cdot 299-5 \cdot 247-247 \\
& =5 \cdot 299-6 \cdot 247 .
\end{aligned}
$$

This is what we wanted, this gives us the solution $x=5$ and $y=-6$.
4. We note that since $c \mid(a+b)$, there is $r \in \mathbb{Z}$ such that $a+b=c r$.

Suppose that $(a, c)=d$. Then there are s and t integers such that $a=d s$ and $c=d t$.
Substituting this into the equation $a+b=c r$, we get

$$
d s+b=d t r
$$

Solving for b, we get

$$
b=d t r-d s=d(t r-s)
$$

Since $t r-s$ is an integer, d divides b. Therefore d is a common divisor of a and b. However, by assumption $(a, b)=1$, therefore $d \leq 1$. Since $d \geq 1$ since it is a greatest common divisor, we may conclude that $d=1$.
A similar argument, replacing the roles of a and b, shows that $(b, c)=1$ as well.

