1. To simplify the notation, let $d=(a, b)$. Therefore we must show that $d=(d, b)$. For d to be the greatest common divisor of d and b, it suffices to show that it satisfies both conditions given in the definition of greatest common divisor.
We begin by showing that $d \mid d$ and $d \mid b$. We have that $d \mid d$ because $d=d \cdot 1$, and 1 is an integer. We also have that $d \mid b$, since d is the greatest common divisor of a and b. Indeed, by definition d must be a common divisor of a and b, and therefore in particular a divisor of b.

Now assume that c is any integer such that $c \mid d$ and $c \mid b$. We must show that $c \leq d$. As shown in class, since d is a greatest divisor, $d \geq 1$, and in particular $d=|d|$. We have also shown in class that the divisors of d are bounded above by $|d|=d$. Therefore if c is a divisor of d, then $c \leq d$.
This completes the proof: d satisfies both conditions so that $d=(d, b)$.
2. This is an "if and only if" statement, so we must show both implications.

We begin by assuming that $(k, n+k)=1$. Let $d=(k, n)$. Since d is a greatest common divisor, $d \geq 1$. We now show that d divides $n+k$. Indeed, since d is the greatest common divisor of k and n, by definition there are integers s and t such that $k=s d$ and $n=t d$. Therefore we have

$$
n+k=t d+s d=(t+s) d
$$

using the distributive property of integers. Since a sum of integers is an integer, d divides $n+k$.
Now we are in the situation that d divides $n+k$ and d divides k (recall that d is the greatest common divisor of n and k and therefore certainly a divisor of k). By the definition of the greatest common divisor, it follows that d must be less than or equal to the greatest common divisor of $n+k$ and k. This greatest common divisor is 1 , so we conclude that $d \leq 1$.
We finally recall from above that since d is a greatest common divisor, $d \geq 1$. Since $d \geq 1$ and $d \leq 1$, it follows that $d=1$, so $(n, k)=1$.
We now do the other direction, and assume that $(n, k)=1$. Let $d=(k, n+k)$. Again we note that $d \geq 1$ since it is a greatest common divisor. We show that d divides n. Indeed, since d is a common divisor of k and $n+k$, there are integers s and t^{1} such that $k=s d$ and $n+k=d t$. Therefore we have

$$
n=(n+k)-k=d t-d s=d(t-s),
$$

[^0]again using the distributive property of integers. Since a difference of integers is an integer, d divides n.
We now conclude similarly as above: d is a common divisor of k and n, and therefore $d \leq(k, n)=1$. Since at the same time $d \geq 1$ since it is a greatest common divisor, we conclude that again $d=(k, n+k)=1$.
3. Suppose that $a \mid b$ and $a>0$. Then since $a \mid a$ (because $a=1 \cdot a$ and 1 is an integer), certainly a is a common divisor of a and b.
Suppose now that c is any common divisor of a and b. Then in particular c is a divisor of a. As was shown in class, then c is bounded above by $|a|$, i.e., $c \leq|a|$. Since $a>0$, it follows that $c \leq a$.
Since a is a common divisor of a and b and any other common divisor of a and b is less than or equal to a, we may conclude that a is the greatest common divisor of a and b.
4. For simplicity, let $d=(a, b)$, where here we use the greatest common divisor definition from the book. By Theorem 4, there are integers x and y such that
$$
d=a x+b y .
$$

Now let c be a common divisor of a and b. In other words, there exist integers r and s such that $a=r c$ and $b=s c$. Substituting this into the equation above, we obtain

$$
d=(r c) x+(s c) y=c(r x+s y)
$$

and since $r x+s y \in \mathbb{Z}$ because r, x, s and y are all integers, it follows that $c \mid d$.

[^0]: ${ }^{1}$ Warning: This is not the same t as before! Whenever we say "there exist" or "there are" we might be conjuring new quantities (or not).

