Math 255 - Spring 2018
Homework 2
This homework is due on Monday, January 29.

1. Let a and b be integers, not both of which are zero. Prove that $(a, b)=((a, b), b)$.
2. Let n and k be integers, not both of which are zero. Prove that $(k, n+k)=1$ if and only if $(k, n)=1$.
3. Prove that if $a \mid b$ and $a>0$ then $(a, b)=a$.

Extra problem for graduate credit:
4. Let a and b be integers, not both of which are zero. Show that if $d=(a, b)$ and c is a common divisor of a and b, then $c \mid d$. (Hint: You will need to use Theorem 4.)

Note that this is enough to show that when a and b are not zero, both definitions of the greatest common divisor given in class are equivalent.

