
Math 255 - Spring 2018
Homework 12 Solutions

1. By Theorem 2 of Section 10, if there is a with order m − 1 modulo m, then m − 1
divides φ(m). In particular, this means that on the one hand m− 1 ≤ φ(m).

On the other hand, recall that φ(m) is the number of units in Z/mZ. This set contains
m elements, and one of them is 0, which is never a unit. From this it follows that in
any case φ(m) ≤ m− 1.

We conclude that in this particular situation, φ(m) = m − 1, or in other words every
element 1, 2, . . . ,m−1 is relatively prime to m. If m is composite, then there is d with
1 < d < m and d divides m. In that case d is not relatively prime to m. Therefore, for
every element 1, 2, . . . ,m − 1 to be relatively prime to m, it must be the case that m
has no divisor other than 1 and itself, and so m is prime.

2. We first note that if g is a primitive root of p, then g is a unit modulo p by definition.
Therefore, by Theorem 5 of Section 10 there is k an integer (in fact 1 ≤ k ≤ φ(p) =
p− 1) with g ≡ hk (mod p), since h is also a primitive root of p.

We now apply Lemma 1 of Section 10: g ≡ hk (mod p) has order p − 1, since it is
a primitive root of p, and therefore it follows that (k, p − 1) = 1. Suppose now for a
contradiction that k were even. In that case, since p − 1 is also even (recall that p is
odd), it would be the case that (k, p− 1) ≥ 2. Therefore k must be odd.

3. Recall that to show that a + 1 has order 6, we must show not only that (a + 1)6 ≡ 1
(mod p), but also that no smaller power of a+ 1 is congruent to 1 modulo p.

However, it still pays to begin by showing that (a+ 1)6 ≡ 1 (mod p), for reasons that
we will explain later. So we begin by showing that. Recall throughout that since a has
order 3 modulo p, we have that a3 ≡ 1 (mod p). We also note that per the hint, since
a 6≡ 1 (mod p) (we know that is not the case since 1 has order 1 modulo p, and a has
order 3) we have that a2 + a+ 1 ≡ 0 (mod p). Therefore we can compute

(a+ 1)6 ≡ a6 + 6a5 + 15a4 + 20a3 + 15a2 + 6a+ 1 (mod p)

≡ 1 + 6a2 + 15a+ 20 + 15a2 + 6a+ 1 (mod p)

≡ 21a2 + 21a+ 22 (mod p)

≡ 21(a2 + a+ 1) + 1 (mod p)

≡ 1 (mod p).

As we remarked above, this does not conclude the proof, since a smaller power of a+ 1
could be congruent to 1 modulo p. However, we did acquire the following knowledge:
By Theorem 1, since (a + 1)6 ≡ 1 (mod 6), it follows that the order of a + 1 divides
6. Therefore it can only be 1, 2, 3 or 6. If we can eliminate the possibilities 1, 2 and
3, the result will follow.
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We first consider the possibility that a+ 1 has order 1 modulo p. If that were the case,
then a+1 ≡ 1 (mod p), and we would have a ≡ 0 (mod p), which is not a unit modulo
p. Therefore a could not have order 3 modulo p (the order of a number modulo m is
only defined if this number is a unit) and so a+ 1 does not have order 1 modulo p.

We now consider the possibility that a+1 has order 2 modulo p. In that case we would
have (a + 1)2 ≡ a2 + 2a + 1 ≡ a2 + a + 1 + a ≡ a ≡ 1 (mod p). (Here we used that
a2 + a+ 1 ≡ 0 (mod p) again.) But a 6≡ 1 (mod p), so this is not possible.

Finally we consider the possibility that a + 1 has order 3 modulo p. But that is not
possible since (a+ 1)3 ≡ a3 + 3a2 + 3a+ 1 ≡ 1 + 3(a2 + a+ 1)− 3 + 1 ≡ −1 (mod p),
and if p is odd, then 1 6≡ −1 (mod p).

Therefore a+ 1 must have order 6 modulo p.

4. (a) We consider two cases: Either n is divisible by an odd prime, or n is not divisible
by an odd prime.

If n is divisible by an odd prime, say p, write n = pem, with (p,m) = 1. Then we
have

φ(n) = φ(pe)φ(m)

= (pe − pe−1)φ(m).

We note that pe−pe−1 is the difference of two odd numbers (if p is odd and e ≥ 1,
then so are pe and pe−1) and therefore pe − pe−1 ≡ 1 − 1 ≡ 0 (mod 2). In other
words, pe− pe−1 is even, and a product of an even number and an integer is even,
so φ(n) is even.

If n is not divisible by an odd prime, then n is only divisible by even primes, but
there is only one even prime. It follows that n = 2e for some e ≥ 2 (remember
that n > 2). In that case

φ(n) = φ(2e) = 2e − 2e−1

= 2(2e−1 − 2e−2),

and 2e−1 − 2e−2 is an integer since e ≥ 2. Therefore φ(n) is even in this case as
well.

(b) We show the existence of such an a by exhibiting it: If a ≡ −1 (mod n), then
(a, n) = 1. Furthermore, if n > 2, then a ≡ −1 6≡ 1 (mod n), so a does not
have order 1 modulo n. However, a2 ≡ (−1)2 ≡ 1 (mod n), so a has order 2. By
Theorem 2 of Section 10, the order of a ≡ −1 (mod n) divides φ(n), and therefore
φ(n) is even.

5. Let g be a primitive root of m. In this case, by Theorem 5, we have

∏
a∈(Z/mZ)×

a ≡
φ(m)∏
i=1

gi (mod m).
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By exponent laws and using the formula
∑φ(m)

i=1 i = φ(m)(φ(m)+1)
2

, we therefore have∏
a∈(Z/mZ)×

a ≡ g
φ(m)(φ(m)+1)

2 (mod m).

Now if m = 2, then φ(m) = 1 and this product is g (mod 2). Since g is a primitive
root of 2, it must be that g ≡ 1 (mod 2), but 1 ≡ −1 (mod 2), so the result follows.

Consider now m > 2. By problem 4, φ(m) is then even and φ(m) + 1 is odd. In

particular, φ(m)
2

is an integer, and we can write

g
φ(m)(φ(m)+1)

2 ≡ (gφ(m)+1)φ(m)/2 ≡ gφ(m)/2 (mod m),

since gφ(m) ≡ 1 (mod m).

If we are willing to use Problem 2 of Homework 11, we are now done, since gφ(m)/2 6≡ 1
(mod m), because g is a primitive root of m and φ(m)/2 is less than φ(m), the order
of g. Therefore gφ(m)/2 ≡ −1 (mod m), and the claim is proved.

We can also obtain the result without appealing to our earlier work by showing directly
that gφ(m)/2 ≡ −1 (mod m). By Theorem 5 of Section 10, because −1 is a unit
modulo m, there is an integer k with 1 ≤ k ≤ φ(m) with −1 ≡ gk (mod m). Then
1 ≡ (−1)2 ≡ g2k (mod m). It follows that 2k ≡ 0 (mod φ(m)), and since φ(m) is even,
we can divide all the way through by 2 to obtain the equation k ≡ 0 (mod φ(m)/2).
In other words k is divisible by φ(m)/2. In the range 1 ≤ k ≤ φ(m), this forces
k = φ(m)/2 or k = φ(m), but we know that k 6= φ(m), since gφ(m) ≡ 1 (mod m)
but gk ≡ −1 (mod m). Therefore, if −1 ≡ gk (mod m) then k = φ(m)/2, and
gφ(m)/2 ≡ −1 (mod m).

3


