Math 255 - Spring 2018
Homework 12 Solutions

1. By Theorem 2 of Section 10, if there is a with order $m-1$ modulo m, then $m-1$ divides $\phi(m)$. In particular, this means that on the one hand $m-1 \leq \phi(m)$.

On the other hand, recall that $\phi(m)$ is the number of units in $\mathbb{Z} / m \mathbb{Z}$. This set contains m elements, and one of them is 0 , which is never a unit. From this it follows that in any case $\phi(m) \leq m-1$.
We conclude that in this particular situation, $\phi(m)=m-1$, or in other words every element $1,2, \ldots, m-1$ is relatively prime to m. If m is composite, then there is d with $1<d<m$ and d divides m. In that case d is not relatively prime to m. Therefore, for every element $1,2, \ldots, m-1$ to be relatively prime to m, it must be the case that m has no divisor other than 1 and itself, and so m is prime.
2. We first note that if g is a primitive root of p, then g is a unit modulo p by definition. Therefore, by Theorem 5 of Section 10 there is k an integer (in fact $1 \leq k \leq \phi(p)=$ $p-1)$ with $g \equiv h^{k}(\bmod p)$, since h is also a primitive root of p.
We now apply Lemma 1 of Section 10: $g \equiv h^{k}(\bmod p)$ has order $p-1$, since it is a primitive root of p, and therefore it follows that $(k, p-1)=1$. Suppose now for a contradiction that k were even. In that case, since $p-1$ is also even (recall that p is odd), it would be the case that $(k, p-1) \geq 2$. Therefore k must be odd.
3. Recall that to show that $a+1$ has order 6 , we must show not only that $(a+1)^{6} \equiv 1$ $(\bmod p)$, but also that no smaller power of $a+1$ is congruent to 1 modulo p.

However, it still pays to begin by showing that $(a+1)^{6} \equiv 1(\bmod p)$, for reasons that we will explain later. So we begin by showing that. Recall throughout that since a has order 3 modulo p, we have that $a^{3} \equiv 1(\bmod p)$. We also note that per the hint, since $a \not \equiv 1(\bmod p)$ (we know that is not the case since 1 has order 1 modulo p, and a has order 3$)$ we have that $a^{2}+a+1 \equiv 0(\bmod p)$. Therefore we can compute

$$
\begin{aligned}
(a+1)^{6} & \equiv a^{6}+6 a^{5}+15 a^{4}+20 a^{3}+15 a^{2}+6 a+1 \quad(\bmod p) \\
& \equiv 1+6 a^{2}+15 a+20+15 a^{2}+6 a+1 \quad(\bmod p) \\
& \equiv 21 a^{2}+21 a+22 \quad(\bmod p) \\
& \equiv 21\left(a^{2}+a+1\right)+1 \quad(\bmod p) \\
& \equiv 1 \quad(\bmod p) .
\end{aligned}
$$

As we remarked above, this does not conclude the proof, since a smaller power of $a+1$ could be congruent to 1 modulo p. However, we did acquire the following knowledge: By Theorem 1 , since $(a+1)^{6} \equiv 1(\bmod 6)$, it follows that the order of $a+1$ divides 6 . Therefore it can only be $1,2,3$ or 6 . If we can eliminate the possibilities 1,2 and 3 , the result will follow.

We first consider the possibility that $a+1$ has order 1 modulo p. If that were the case, then $a+1 \equiv 1(\bmod p)$, and we would have $a \equiv 0(\bmod p)$, which is not a unit modulo p. Therefore a could not have order 3 modulo p (the order of a number modulo m is only defined if this number is a unit) and so $a+1$ does not have order 1 modulo p.

We now consider the possibility that $a+1$ has order 2 modulo p. In that case we would have $(a+1)^{2} \equiv a^{2}+2 a+1 \equiv a^{2}+a+1+a \equiv a \equiv 1(\bmod p)$. (Here we used that $a^{2}+a+1 \equiv 0(\bmod p)$ again.) But $a \not \equiv 1(\bmod p)$, so this is not possible.
Finally we consider the possibility that $a+1$ has order 3 modulo p. But that is not possible since $(a+1)^{3} \equiv a^{3}+3 a^{2}+3 a+1 \equiv 1+3\left(a^{2}+a+1\right)-3+1 \equiv-1(\bmod p)$, and if p is odd, then $1 \not \equiv-1(\bmod p)$.
Therefore $a+1$ must have order 6 modulo p.
4. (a) We consider two cases: Either n is divisible by an odd prime, or n is not divisible by an odd prime.
If n is divisible by an odd prime, say p, write $n=p^{e} m$, with $(p, m)=1$. Then we have

$$
\begin{aligned}
\phi(n) & =\phi\left(p^{e}\right) \phi(m) \\
& =\left(p^{e}-p^{e-1}\right) \phi(m) .
\end{aligned}
$$

We note that $p^{e}-p^{e-1}$ is the difference of two odd numbers (if p is odd and $e \geq 1$, then so are p^{e} and $\left.p^{e-1}\right)$ and therefore $p^{e}-p^{e-1} \equiv 1-1 \equiv 0(\bmod 2)$. In other words, $p^{e}-p^{e-1}$ is even, and a product of an even number and an integer is even, so $\phi(n)$ is even.
If n is not divisible by an odd prime, then n is only divisible by even primes, but there is only one even prime. It follows that $n=2^{e}$ for some $e \geq 2$ (remember that $n>2$). In that case

$$
\begin{aligned}
\phi(n)=\phi\left(2^{e}\right) & =2^{e}-2^{e-1} \\
& =2\left(2^{e-1}-2^{e-2}\right),
\end{aligned}
$$

and $2^{e-1}-2^{e-2}$ is an integer since $e \geq 2$. Therefore $\phi(n)$ is even in this case as well.
(b) We show the existence of such an a by exhibiting it: If $a \equiv-1(\bmod n)$, then $(a, n)=1$. Furthermore, if $n>2$, then $a \equiv-1 \not \equiv 1(\bmod n)$, so a does not have order 1 modulo n. However, $a^{2} \equiv(-1)^{2} \equiv 1(\bmod n)$, so a has order 2. By Theorem 2 of Section 10, the order of $a \equiv-1(\bmod n)$ divides $\phi(n)$, and therefore $\phi(n)$ is even.
5. Let g be a primitive root of m. In this case, by Theorem 5 , we have

$$
\prod_{a \in(\mathbb{Z} / m \mathbb{Z})^{\times}} a \equiv \prod_{i=1}^{\phi(m)} g^{i} \quad(\bmod m)
$$

By exponent laws and using the formula $\sum_{i=1}^{\phi(m)} i=\frac{\phi(m)(\phi(m)+1)}{2}$, we therefore have

$$
\prod_{a \in(\mathbb{Z} / m \mathbb{Z})^{\times}} a \equiv g^{\frac{\phi(m)(\phi(m)+1)}{2}} \quad(\bmod m) .
$$

Now if $m=2$, then $\phi(m)=1$ and this product is $g(\bmod 2)$. Since g is a primitive root of 2 , it must be that $g \equiv 1(\bmod 2)$, but $1 \equiv-1(\bmod 2)$, so the result follows.
Consider now $m>2$. By problem $4, \phi(m)$ is then even and $\phi(m)+1$ is odd. In particular, $\frac{\phi(m)}{2}$ is an integer, and we can write

$$
g^{\frac{\phi(m)(\phi(m)+1)}{2}} \equiv\left(g^{\phi(m)+1}\right)^{\phi(m) / 2} \equiv g^{\phi(m) / 2} \quad(\bmod m),
$$

since $g^{\phi(m)} \equiv 1(\bmod m)$.
If we are willing to use Problem 2 of Homework 11, we are now done, since $g^{\phi(m) / 2} \not \equiv 1$ $(\bmod m)$, because g is a primitive root of m and $\phi(m) / 2$ is less than $\phi(m)$, the order of g. Therefore $g^{\phi(m) / 2} \equiv-1(\bmod m)$, and the claim is proved.
We can also obtain the result without appealing to our earlier work by showing directly that $g^{\phi(m) / 2} \equiv-1(\bmod m)$. By Theorem 5 of Section 10 , because -1 is a unit modulo m, there is an integer k with $1 \leq k \leq \phi(m)$ with $-1 \equiv g^{k}(\bmod m)$. Then $1 \equiv(-1)^{2} \equiv g^{2 k}(\bmod m)$. It follows that $2 k \equiv 0(\bmod \phi(m))$, and since $\phi(m)$ is even, we can divide all the way through by 2 to obtain the equation $k \equiv 0(\bmod \phi(m) / 2)$. In other words k is divisible by $\phi(m) / 2$. In the range $1 \leq k \leq \phi(m)$, this forces $k=\phi(m) / 2$ or $k=\phi(m)$, but we know that $k \neq \phi(m)$, since $g^{\phi(m)} \equiv 1(\bmod m)$ but $g^{k} \equiv-1(\bmod m)$. Therefore, if $-1 \equiv g^{k}(\bmod m)$ then $k=\phi(m) / 2$, and $g^{\phi(m) / 2} \equiv-1(\bmod m)$.

