Math 255 - Spring 2018
Homework 12

This homework is due on Monday, April 30.

1. Let $m>1$ be an integer. Show that if there is a an integer with $(a, m)=1$ and the order of a modulo m is $m-1$, then m is prime.
2. Let p be an odd prime and g and h be primitive roots of p. Show that $g \equiv h^{k}(\bmod p)$ for some k, and that in this case k is odd.
3. Let p be an odd prime. Show that if a has order 3 modulo p, then $a+1$ has order 6 modulo p.
Hint: You may use the following result without proof: If $a \not \equiv 1(\bmod p)$ and a has order t modulo p, then

$$
a^{t-1}+a^{t-2}+\ldots+a+1 \equiv 0 \quad(\bmod p)
$$

4. In this problem we will show that if $n>2$, then $\phi(n)$ is even in two different ways.
(a) Show this directly, using the explicit formula we have for $\phi(n)$.
(b) Show this by first showing that if $n>2$, then there is a with $(a, n)=1$ and a has order 2 modulo n. Then apply Theorem 2 of Section 10 to conclude.

Extra problem for graduate credit:
5. Let m be any integer that has a primitive root. Show that in this case

$$
\prod_{a \in(\mathbb{Z} / m \mathbb{Z})^{\times}} a \equiv-1 \quad(\bmod m)
$$

