
Math 255 - Spring 2018
Homework 11 Solutions

1. The last two digits of any positive integer is the least residue of this integer modulo
100. Therefore we essentially want to compute 20182018 (mod 100). Since 100 is not
a prime, we cannot use Fermat’s Little Theorem. Furthermore, 100 and 2018 are not
relatively prime (2 divides both of them) so we cannot apply Euler’s Theorem directly.
However, we can still finesse something by factoring 100 into its prime-power factors.
In other words, we will compute 20182018 (mod 4) and 20182018 (mod 25).

We begin with 20182018 (mod 4). Again we note that (4, 2018) = 2 6= 1, so we cannot
apply Euler’s Theorem. Still this is not such a big deal, because arithmetic modulo 4
is simple. Indeed, 2018 ≡ 2 (mod 4), so we are interested in computing 22018 (mod 4).
Here we notice that already 22 ≡ 0 (mod 4), and 22018 = 22 ·22016. Therefore, 22018 ≡ 0
(mod 4), since it is certainly divisible by 4.

We now turn our attention to 20182018 (mod 25). This time, (2018, 25) = 1, so we can
apply Euler’s Theorem. We have that φ(25) = 25 − 5 = 20, so 201820 ≡ 1 (mod 25).
Since we have that 2018 = 20 · 100 + 18, it follows that 20182018 ≡ 201818 (mod 25).
Furthermore, since 2018 ≡ 18 (mod 25), we conclude that 20182018 ≡ 1818 (mod 25).

This is not super easy to compute, but it is certainly possible:

1818 = (182)9

≡ ((−7)2)9 (mod 25)

≡ 499 (mod 25)

≡ (−1)9 (mod 25)

≡ −1 ≡ 24 (mod 25).

Therefore, we now know that 20182018 ≡ 0 (mod 4) and 20182018 ≡ 24 (mod 25). The
unique number, modulo 100, that is both 0 (mod 4) and 24 (mod 25) is in fact 24 itself.
(We can see this either using the Chinese Remainder Theorem, or in the following quick
way: There are four lifts of 24 (mod 25) to Z/100Z: 24, 49, 74 and 99. Only one of
these is 0 (mod 4) (actually, note that there is one that is 0 (mod 4), one that is 1
(mod 4), one that is 2 (mod 4) and one that is 3 (mod 4); that is a consequence of
the Chinese Remainder Theorem), and that is 24 (mod 100).

Therefore the last two digits of 20182018 are 24. This agrees with Homework 10 in
which we showed that the last digit was 4.

2. We first handle the case of n = 2 separately, for reasons that will only become clear
much later. Since the only element of (Z/2Z)× is 1, the product is 1.

Now let n ≥ 3. To solve this problem, we will partition this product into two:∏
a∈(Z/nZ)×

a ≡
∏

a∈(Z/nZ)×
a6≡a−1 (mod n)

a ·
∏

a∈(Z/nZ)×
a≡a−1 (mod n)

a,
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and consider each product separately.

The first product is 1, by an argument similar to the one used in the proof of Wilson’s
Theorem. Indeed, consider the set

S = {a ∈ (Z/nZ)× : a 6≡ a−1 (mod n)}.

We have that the following additional two facts are true about the elements of S:

• If a ∈ S, then a−1 ∈ S as well. This follows because (a−1)−1 ≡ a (mod n).

• If a, b ∈ S and a 6≡ b (mod n), then a−1 6≡ b−1 (mod n). This is because if
a−1 ≡ b−1 (mod n), then

a ≡ a(b−1b) ≡ (ab−1)b ≡ (aa−1)b ≡ b (mod n).

Therefore, the elements of S can be partitioned into pairs (a, a−1), by which we mean
that both elements of the pair belong to S, each element of S belongs to one and only
one pair, and no pair contains two identical element. Since the product of each pair is
1, and 1 raised to an arbitrary exponent is 1, the first product is 1.

We now turn our attention to the second product. We will use a similar argument,
except this time since a ≡ a−1 (mod n), we must modify the pairs (because our old
pairs would just be singletons here). Let

T = {a ∈ (Z/nZ)× : a ≡ a−1 (mod n)}.

We now show that this set can be partitioned into pairs (a,−a). We follow an approach
similar to the one we used for the set S. To help us, we note that a ≡ a−1 (mod n) if
and only if a2 ≡ 1 (mod n) (this is true because we can multiply both sides by a, and
a is a unit in Z/nZ by assumption). The following three facts are true:

• For a ∈ (Z/nZ)×, a 6≡ −a (mod n). This is because if it were, then we would
have 2a ≡ 0 (mod n), but since (a, n) = 1, this forces 2 ≡ 0 (mod n) or n divides
2. This is not the case since n ≥ 3.

• If a ∈ T , then −a ∈ T as well. This follows because (−a)2 ≡ a2 ≡ 1 (mod n).

• If a, b ∈ T and a 6≡ b (mod n), then −a 6≡ −b (mod n). This is because −1 is a
unit modulo n.

Therefore, the elements of T can be partitioned into pairs (a,−a), where again we
mean that no pair contains two identical elements, both elements of the pair belong to
T , and each element belongs to one and only one pair.

The product of each such pair is

a · (−a) ≡ −a2 ≡ −1 (mod n),
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(we recall that if a ∈ T , then a2 ≡ 1 (mod n)), and therefore the second product is
either 1 or −1, depending on how many pairs are contained in the set T .

Therefore we have∏
a∈(Z/nZ)×

a ≡
∏

a∈(Z/nZ)×
a6≡a−1 (mod n)

a ·
∏

a∈(Z/nZ)×
a≡a−1 (mod n)

a ≡ 1 · ±1 ≡ ±1 (mod n).

3. (a) We have that

φ(n) = n

(
1− 1

p

)(
1− 1

q

)
= pq

(
1− 1

p

)(
1− 1

q

)
= (p− 1)(q − 1).

(b) We are now in the situation where we know that n = pq for distinct primes p and
q, and we know the value of φ(n) = (p− 1)(q − 1). Expanding φ(n), we get

φ(n) = pq − p− q + 1 = n− (p+ q) + 1.

Therefore, we have that
p+ q = n− φ(n) + 1,

and since we know n and φ(n), we know p+ q.

(c) We have that

x2 − (p+ q)x+ n = x2 − (p+ q) + pq = (x− p)(x− q).

Therefore, knowing n and φ(n) we can get p + q, and therefore the polynomial
x2 − (p+ q)x+ n. From there, we can use the quadratic formula to compute the
two roots of this polynomial, and get p and q. (Actually, in real life Newton’s
method would be a much faster and easier way to get p and q, especially since it
converges quickly and we know a priori that the roots are integers.)

(d) We apply the algorithm. First we have that if 4399 = pq, then

p+ q = n− φ(n) + 1 = 4399− 4264 + 1 = 136.

Then we form the polynomial x2 − (p+ q)x+ n, which here is

x2 − 136 + 4399.
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Using the quadratic formula, we have that the roots of this polynomial are

136±
√

1362 − 4 · 4399

2
=

136±
√

18496− 4 · 17596

2

=
136±

√
900

2

=
136± 30

2
.

We therefore get that

p =
136− 30

2
=

106

2
= 53

and

q =
136 + 30

2
=

166

2
= 83,

and from this it follows that

4399 = 53× 83.

4. (a) Since there are natural maps

Z/mnZ→ Z/mZ
a 7→ a,

and

Z/mnZ→ Z/nZ
a 7→ a,

given by “reducing more,” (these are the maps we discussed in class before dis-
cussing lifting) there is also a natural map

Z/mnZ→ Z/mZ× Z/nZ
a 7→ (a, a),

given by reducing a modulo m in the first factor and reducing a modulo n in the
second factor. Using the Chinese Remainder Theorem, we can prove that this
map is a bijection. (We can use CRT since (m,n) = 1.)

We first show that it is surjective. This is because by CRT any pair of congruences
x ≡ a (mod m) and x ≡ b (mod n) corresponds to an element x ≡ c (mod mn).
Here by “correspond” we mean exactly that c ≡ a (mod m) and c ≡ b (mod n),
and therefore any pair (a, b) ∈ Z/mZ × Z/nZ has a preimage in Z/mnZ under
this map.

Secondly, this map is injective, because any pair of congruences x ≡ a (mod m)
and x ≡ b (mod n) corresponds to a unique element x ≡ c (mod mn). Therefore
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there cannot be c1 and c2 ∈ Z/mnZ that map to the same pair (a, b) ∈ Z/mZ×
Z/nZ, or this would violate the uniqueness in the statement of CRT.

Therefore, the map we gave above is a bijection. (In fact, we could show more, it
is a ring homomorphism.)

We now show that if we restrict both sides to the units, the map is still well-
defined and surjective. In other words, a ∈ Z/mnZ is a unit if and only if both
a ∈ Z/mZ and a ∈ Z/nZ are units.

In the first direction, if a ∈ Z/mnZ is a unit, then (a,mn) = 1, and therefore
(a,m) = 1 and (a, n) = 1. (This can be shown by contradiction; if either of these
statements were not true, then the common divisor of a and m or of a and n
would also be a common divisor of a and mn.) This shows that the map is still
well-defined after restricting the domain and codomain.

In the second direction, if a ∈ Z/mZ and a ∈ Z/nZ are both units, then a ∈
Z/mnZ is also a unit. Indeed, suppose that p is a prime that divides both a and
mn (so that (a,mn) 6= 1). Then p divides mn and therefore p divides m or n,
from which it follows that p divides either (a,m) or (a, n), a contradiction. This
shows that the map remains surjective after restricting the domain, because each
element of the image still has a preimage.

Note that we do not need to show that the restriction to units is injective, as the
restriction of an injective map is always injective.

In conclusion, the map

(Z/mnZ)× → (Z/mZ)× × (Z/nZ)×

a 7→ (a, a),

is a bijection.

(b) This is now easy: Because both sets are finite, a bijection between them establishes
that the sets are the same size. φ(mn) is the size of (Z/mnZ)×, and by definition
of the Cartesian product, the set (Z/mZ)× × (Z/nZ)× has size φ(m)φ(n).
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