Math 255 - Spring 2018
Homework 11
This homework is due on Monday, April 23.

1. What are the last two digits of 2018^{2018} ?
2. Let $n \geq 2$ be an integer, and recall that $(\mathbb{Z} / n \mathbb{Z})^{\times}$denotes the group of units in $\mathbb{Z} / n \mathbb{Z}$. Show that

$$
\prod_{a \in(\mathbb{Z} / n \mathbb{Z})^{\times}} a \equiv \pm 1 \quad(\bmod n)
$$

(In other words this product will always be either 1 or -1 .)
Hint: This is similar to the proof of Wilson's Theorem, except that it is now false that $x^{2} \equiv 1(\bmod n)$ has exactly two solutions.
3. In this problem we will show how we can factor n given knowledge of the value of $\phi(n)$, under certain circumstances. This is a trick that it used to break the RSA cryptosystem when $\phi(n)$ is leaked or guessed. Throughout, suppose that n is a positive integer with $n=p q$, for p and q two distinct primes.
(a) In this case what is $\phi(n)$?
(b) From knowledge only of the values of n and $\phi(n)$, and knowledge of the fact that $n=p q$ is a product of two primes, explain how one can obtain the value of $p+q$.
(c) From knowledge only of n and $\phi(n)$, and knowledge of the fact that $n=p q$ is a product of two primes, explain how one can obtain the values of p and q. Hint: What are the roots of the polynomial $x^{2}-(p+q) x+n$?
(d) Apply part (c) to factor the number $n=4399$, which is of the form $n=p q$ for p and q two distinct primes, using the fact that $\phi(4399)=4264$.

Extra problem for graduate credit:
4. In this problem we will prove that ϕ is multiplicative in a different way than the one we used in class.
(a) Let m and n be positive integers with $(m, n)=1$. Prove that there is a bijection

$$
(\mathbb{Z} / m n \mathbb{Z})^{\times} \leftrightarrow(\mathbb{Z} / m \mathbb{Z})^{\times} \times(\mathbb{Z} / n \mathbb{Z})^{\times} .
$$

(b) Conclude from this bijection that when $(m, n)=1, \phi(m n)=\phi(m) \phi(n)$.

