Math 255 - Spring 2018
Homework 10 Solutions

1. Here 26 is not a prime, so we may not use Fermat's Little Theorem directly. However, if we can compute the least residue of $2018^{2018}(\bmod 2)$ and $2018^{2018}(\bmod 13)$ (and those are primes so maybe we'll get to use Fermat's Little Theorem), then using the Chinese Remainder Theorem we will be able to obtain the least residue of 2018^{2018} $(\bmod 26)$.
First we notice that $2018 \equiv 0(\bmod 2)$, so $2018^{2018} \equiv 0^{2018} \equiv 0(\bmod 2)$.
Next, we consider $2018^{2018}(\bmod 13)$. We can apply Fermat's Little Theorem since $(2018,13)=1$. We first note that $2018=12 \times 168+2$ and $2018=13 \times 155+3$, so that $2018 \equiv 3(\bmod 13)$. Therefore we have

$$
\begin{aligned}
2018^{2018} & \equiv 3^{12 \times 168+2} \quad(\bmod 13) \\
& \equiv\left(3^{12}\right)^{168} \cdot 3^{2} \quad(\bmod 13) \\
& \equiv 1^{168} \cdot 9 \quad(\bmod 13) \\
& \equiv 9 \quad(\bmod 13)
\end{aligned}
$$

Therefore, $2018^{2018} \equiv 0(\bmod 2)$ and $2018^{2018} \equiv 9(\bmod 13)$. It might be clear that $22(\bmod 26)$ satisfies both these congruences, and therefore $2018^{2018} \equiv 22(\bmod 26)$, but if that is not clear, we can use the Chinese Remainder Theorem algorithm.
Here M_{1} and x_{1} don't matter since $a_{1}=0$, and $M_{2}=2$ and $x_{2} \equiv 2^{-1} \equiv 7(\bmod 13)$. Therefore

$$
\begin{aligned}
2018^{2018} & \equiv 0+9 \cdot 2 \cdot 7 \quad(\bmod 26) \\
& \equiv 126 \quad(\bmod 26) \\
& \equiv 22 \quad(\bmod 26) .
\end{aligned}
$$

2. Here we begin by noting that the last digit of 2018^{2018} is the least residue of 2018^{2018} modulo 10. Sadly, once again 10 is not a prime, so we cannot use Fermat's Little Theorem. But as in problem 1, if we can figure out $2018^{2018}(\bmod 2)$ and 2018^{2018} $(\bmod 5)$, then using the Chinese Remainder Theorem we will obtain $2018^{2018}(\bmod 10)$, and therefore the last digit.
Again we have $2018 \equiv 0(\bmod 2)$, so $2018^{2018} \equiv 0^{2018} \equiv 0(\bmod 2)$.
Next, we consider $2018^{2018}(\bmod 5)$. We can apply Fermat's Little Theorem since $(2018,5)=1$. We have $2018 \equiv 3(\bmod 5)$ and $2018=4 \times 504+2$, so

$$
\begin{aligned}
2018^{2018} & \equiv 3^{4 \times 504+2} \quad(\bmod 5) \\
& \equiv\left(3^{4}\right)^{504} \cdot 3^{2} \quad(\bmod 13) \\
& \equiv 1^{504} \cdot 9 \quad(\bmod 13) \\
& \equiv 4 \quad(\bmod 5)
\end{aligned}
$$

Therefore, $2018^{2018} \equiv 0(\bmod 2)$ and $2018^{2018} \equiv 4(\bmod 5)$. It might be clear that 4 $(\bmod 10)$ satisfies both these congruences, and therefore the last digit of 2018^{2018} is 4 . Of course, if that is not clear, we can use the Chinese Remainder Theorem algorithm, which we leave to the reader.
(Note that this is cool, because 2018^{2018} is a number with more than 6,500 digits! That we can compute the last one without computing the whole giant number is neat.)
3. By Wilson's Theorem, we have that

$$
(p-1)!\equiv-1 \quad(\bmod p)
$$

We also note that

$$
\begin{aligned}
(p-1)! & =(p-3)!(p-2)(p-1) \\
& \equiv(p-3)!(-2)(-1) \quad(\bmod p) \\
& \equiv 2(p-3)!\quad(\bmod p)
\end{aligned}
$$

Therefore

$$
2(p-3)!\equiv-1 \quad(\bmod p)
$$

From this we easily conclude that

$$
2(p-3)!+1 \equiv 0 \quad(\bmod p)
$$

4. We note that $437=19 \times 23$; it is not a prime! Therefore we will do as in problems 1 and 2 , and consider 18! modulo 19 and modulo 23 separately. The Chinese Remainder Theorem will allow us to get the answer we want at the end.
Since 19 is prime, a straightforward application of Wilson's Theorem tells us that $18!\equiv-1(\bmod 19)$.
To compute 18! (mod 23), we will also use Wilson's Theorem, but we will have to work a little bit harder. Wilson's Theorem gives us that

$$
22!\equiv-1 \quad(\bmod 23)
$$

Similarly to problem 3, we have

$$
\begin{aligned}
22! & =18!\cdot 19 \cdot 20 \cdot 21 \cdot 22 \\
& \equiv 18!\cdot(-4) \cdot(-3) \cdot(-2) \cdot(-1) \quad(\bmod 23) \\
& \equiv 18!\cdot 24 \quad(\bmod 23) \\
& \equiv 18!\quad(\bmod 23)
\end{aligned}
$$

Therefore we have

$$
18!\equiv 22!\equiv-1 \quad(\bmod 23)
$$

In conclusion, $18!\equiv-1(\bmod 19)$ and $18!\equiv-1(\bmod 23)$. Therefore, the Chinese Remainder Theorem tells us that the only class modulo 437 that satisfies both these congruences is $-1(\bmod 437)$. (By uniqueness, since $-1 \equiv-1(\bmod 19)$ and $-1 \equiv-1$ (mod 23).) Therefore we have

$$
18!\equiv-1 \equiv 436 \quad(\bmod 437)
$$

5. (a) We notice that we can write

$$
f(n)=\sum_{d \mid n}(d+1)=\sum_{d \mid n} d+\sum_{d \mid n} 1=\sigma(n)+d(n) .
$$

Therefore using Theorems 1 and 2 we have, if $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ is the prime-power factorization of n, that

$$
f(n)=\left(e_{1}+1\right)\left(e_{2}+1\right) \cdots\left(e_{k}+1\right)+\left(\frac{p_{1}^{e_{1}+1}-1}{p_{1}-1}\right)\left(\frac{p_{2}^{e_{2}+1}-1}{p_{2}-1}\right) \cdots\left(\frac{p_{k}^{e_{k}+1}-1}{p_{k}-1}\right)
$$

(b) We do not expect f to be multiplicative; while a product or quotient of multiplicative functions is multiplicative, a sum or a difference is not, because addition doesn't play that well with multiplication. Another reason why we do not expect f to be multiplicative is that in the formula we got above, we cannot split up $f(n)$ into a product of functions of $p_{i}^{e_{i}}$, there is a pesky sum in the middle.
Indeed we may disprove the statement by giving a single counter-example: We have that $(3,4)=1$ and

$$
\begin{aligned}
f(3 \cdot 4)=f(12) & =(1+1)+(2+1)+(3+1)+(4+1)+(6+1)+(12+1) \\
& =2+3+4+5+7+13 \\
& =34
\end{aligned}
$$

but

$$
\begin{aligned}
f(3) & =(1+1)+(3+1) \\
& =2+4 \\
& =6,
\end{aligned}
$$

and

$$
\begin{aligned}
f(4) & =(1+1)+(2+1)+(4+1) \\
& =2+3+5 \\
& =10 .
\end{aligned}
$$

And we see that

$$
f(12) \neq f(3) f(4),
$$

despite the fact that $(3,4)=1$. Therefore f is not multiplicative.
6. (a) We have

$$
\begin{array}{cc}
10!\equiv-1 & (\bmod 11) \\
9!1!\equiv 1 & (\bmod 11) \\
8!2!\equiv-1 & (\bmod 11) \\
7!3!\equiv 1 & (\bmod 11) \\
6!4!\equiv-1 & (\bmod 11) \\
5!5!\equiv 1 & (\bmod 11)
\end{array}
$$

(b) We can guess the following theorem: Let p be a prime. Then

$$
(p-1-i)!i!\equiv(-1)^{i+1} \quad(\bmod p)
$$

The proof is:

$$
\begin{aligned}
(p-1-i)!i! & \equiv(-1)^{i}(-1)^{i}(p-1-i)!i!\quad(\bmod p) \\
& \equiv(-1)^{i}(p-1-i)!(-1)^{i} i!\quad(\bmod p) \\
& \equiv(-1)^{i}(p-1-i)!(-1)(-2) \ldots(-i+1)(-i) \quad(\bmod p) \\
& \equiv(-1)^{i}(p-(i+1))!(p-1)(p-2) \ldots(p-(i-1))(p-i) \quad(\bmod p) \\
& \equiv(-1)^{i}(p-1)!\quad(\bmod p) \\
& \equiv(-1)^{i}(-1) \quad(\bmod p) \\
& \equiv(-1)^{i+1} \quad(\bmod p)
\end{aligned}
$$

where in the first step we have used that $(-1)^{i}(-1)^{i}=\left((-1)^{i}\right)^{2}=1$.

