Math 255: Spring 2017
 Exam 2

NAME:

Time: 50 minutes

For each problem, you must write down all of your work carefully and legibly to receive full credit. For each question, you must use theorems and/or mathematical reasoning to support your answer, as appropriate.

Failure to follow these instructions will constitute a breach of the UVM Code of Academic Integrity:

- You may not use a calculator or any notes or book during the exam.
- You may not access your cell phone during the exam for any reason; if you think that you will want to check the time please wear a watch.
- The work you present must be your own.
- Finally, you will more generally be bound by the UVM Code of Academic Integrity, which stipulates among other things that you may not communicate with anyone other than the instructor during the exam, or look at anyone else's solutions.

I understand and accept these instructions.

Signature: \qquad

Problem	Value	Score
1	6	
2	6	
3	8	
4	8	
5	4	
6	8	
7	10	
TOTAL	50	

Problem 3: (8 points)

a) State Fermat's Little Theorem (also known as Fermat's Theorem in the book).
b) Show that if p and q are distinct primes,

$$
p^{q-1}+q^{p-1} \equiv 1 \quad(\bmod p q) .
$$

Problem 4: (8 points)

a) State Wilson's Theorem.
b) Let p be an odd prime. Show that

$$
1^{2} \cdot 3^{2} \cdot 5^{2} \cdots(p-2)^{2} \equiv(-1)^{(p+1) / 2} \quad(\bmod p)
$$

Problem 5: (4 points) Give the form of all positive integers n satisfying $\tau(n)=10$.

Problem 6 : (8 points) In this problem we will show that if $n>2, \varphi(n)$ is even.
a) Let $n=2^{k}$ with $k \geq 2$. Show that in this case $\varphi(n)$ is even.
b) Now suppose that there is an odd prime p such that p divides n. Show that in this case also, $\varphi(n)$ is even.

