
Math 255 - Spring 2017
Solutions to suggested problems

Problems between April 14 and May 5 (Final Exam)

Please note: If there are any typos, please post about them on Piazza. The latest
corrections to the solutions will be available there.

Section 9.1

1. (a) We use the quadratic formula:

x ≡ −7 + “
√

49− 40”

2
≡ −7 + “

√
9”

2
≡ −7± 3

2
(mod 11).

This is x ≡ −5,−2 (mod 11) or x ≡ 6, 9 (mod 11). Here we use the fact that
we know a square root of 9 modulo any n, and since 11 is an odd prime, y2 ≡ 9
(mod 11) has two solutions x1 and −x1.

(b) Again we use the quadratic formula:

x ≡ −9 + “
√

81− 84”

6
≡ −9 + “

√
−3”

6
(mod 13).

Therefore everything hangs on whether y2 ≡ −3 ≡ 10 (mod 13) has a solution
and what it is. Example 9.1 tackles exactly this problem and gives us the solutions
y ≡ 6, 7 (mod 13). (We could have also computed all of the squares modulo 13
ourselves; 13 is not too big.) We will also need to know what 6−1 (mod 13) is.
Since 2 · 6 = 12 ≡ −1 (mod 13), 6−1 ≡ −2 ≡ 11 (mod 13). Now we plug all of
this into the quadratic equation to get

x ≡ −9 + 6

6
≡ 11 · (−3) ≡ −33 ≡ 6 (mod 13)

and

x ≡ −9 + 7

6
≡ 11 · (−2) ≡ −22 ≡ 4 (mod 13)

(c) We use the quadratic formula once more:

x ≡ −6 + “
√

36− 20”

10
≡ −6 + “

√
16”

10
(mod 23).

Since 23 is an odd prime, we know that y2 ≡ 16 (mod 23) has two solutions x1

and −x1. We know a solution since 16 is a square in the integers, therefore both
solutions are y ≡ 4,−4 ≡ 4, 19 (mod 23). Now to complete the problem we need
to find 10−1 (mod 23). We use the Euclidean algorithm

23 = 2 · 10 + 3

10 = 3 · 3 + 1,
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then backsolve

1 = 10− 3 · 3 = 10− 3(23− 2 · 10) = 10− 3 · 23 + 6 · 10 = 7 · 10− 3 · 23,

and 10−1 ≡ 7 (mod 23). Therefore the solutions are

x ≡ −6 + 4

10
≡ (−2) · 7 ≡ −14 ≡ 9 (mod 23)

and

x ≡ −6 + 19

10
≡ 13 · 7 ≡ 91 ≡ 22 (mod 23).

4. We compute
(

3
23

)
and

(
3
31

)
. There are many ways to do this, and this section probably

expects us to use Euler’s Criterion, but now that we know Quadratic Reciprocity, since
both 23 and 31 are primes, we might as well use it since it’s faster. We have(

3

23

)
= (−1)

3−1
2

23−1
2

(
23

3

)
= −

(
2

3

)
= 1.

Therefore 3 is indeed a quadratic residue modulo 23. Now onto 31:(
3

31

)
= (−1)

3−1
2

31−1
2

(
31

3

)
= −

(
1

3

)
= −1,

and 3 is a quadratic nonresidue modulo 31.

11. (a) By Theorem 9.1, any even power of a primitive root is a quadratic residue. There-
fore the quadratic residues modulo 19 are

22 ≡ 4 (mod 19), 24 ≡ 16 (mod 19), 26 ≡ 64 ≡ 7 (mod 19),

28 ≡ 28 ≡ 9 (mod 19), 210 ≡ 36 ≡ 17 (mod 19), 212 ≡ 68 ≡ 11 (mod 19)

214 ≡ 44 ≡ 6 (mod 19), 216 ≡ 24 ≡ 5 (mod 19), 218 ≡ 20 ≡ 1 (mod 19).

Section 9.2

1. (a) Since both 19 and 23 are odd primes we can use Quadratic Reciprocity:(
19

23

)
= (−1)

19−1
2

23−1
2

(
23

19

)
= −

(
4

19

)
= −1

(b) We note that both 23 and 59 are odd primes so we can use Quadratic Reciprocity:(
−23

59

)
=

(
−1

59

)(
23

59

)
= (−1)(−1)

23−1
2

59−1
2

(
59

23

)
=

(
13

23

)
= (−1)

13−1
2

23−1
2

(
23

13

)
=

(
10

13

)
= 1

Here we used that 53 ≡ 3 (mod 4) so
(−1
59

)
= −1, that 13 is also an odd prime,

and the results of Example 9.1.
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(c) We cannot use Quadratic Reciprocity right away because 20 is not a prime, al-
though we will later:(

20

31

)
=

(
4

31

)(
5

31

)
=

(
5

31

)
= (−1)

5−1
2

31−1
2

(
31

5

)
=

(
1

5

)
= 1.

(d) Again, 18 is not prime, so we cannot use Quadratic Reciprocity.(
18

43

)
=

(
2

43

)(
9

43

)
= −1.

Here we have used that 43 ≡ 3 (mod 8) so
(

2
43

)
= −1.

(e) Again we cannot use Quadratic Reciprocity. I belabor this point because this is
a common mistake. Quadratic Reciprocity is only for odd primes.(

−72

131

)
=

(
−1

131

)(
2

131

)(
36

131

)
= (−1)(−1) = 1.

Section 9.3

1. (a) Both 71 and 73 are odd primes, so we use Quadratic Reciprocity(
71

73

)
= (−1)

71−1
2

73−1
2

(
73

71

)
=

(
2

71

)
= 1

(b) See solutions to Quiz 24.

(c) Again 461 and 773 are odd primes:(
461

773

)
= (−1)

461−1
2

773−1
2

(
773

461

)
=

(
312

461

)
=

(
2

461

)(
4

461

)(
3

461

)(
13

461

)
= −(−1)

3−1
2

461−1
2

(
461

3

)
(−1)

13−1
2

461−1
2

(
461

13

)
=

(
2

3

)(
6

13

)
= −

(
2

13

)(
3

13

)
= −(−1)

3−1
2

13−1
2

(
13

3

)
= −

(
1

3

)
= −1

(d) These are getting too ridiculous for the final but they are fun:(
1234

4567

)
=

(
2

4567

)(
617

4567

)
= (−1)

617−1
2

4567−1
2

(
4567

617

)
=

(
248

617

)
=

(
2

617

)(
4

617

)(
31

617

)
= (−1)

31−1
2

617−1
2

(
617

31

)
=

(
28

31

)
=

(
4

31

)(
7

31

)
= (−1)

7−1
2

31−1
2

(
31

7

)
= −

(
3

7

)
= −(−1)

3−1
2

7−1
2

(
7

3

)
=

(
1

3

)
= 1
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(e) (
3658

12703

)
=

(
2

12703

)(
31

12703

)(
59

12703

)
= (−1)

31−1
2

12703−1
2

(
12703

31

)
(−1)

59−1
2

12703−1
2

(
12703

59

)
=

(
24

31

)(
18

59

)
=

(
2

31

)(
3

31

)(
4

31

)(
2

59

)(
9

59

)
= (−1)

3−1
2

31−1
2

(
31

3

)
(−1) =

(
1

3

)
= 1

3. (a) This amounts to computing
(
219
419

)
, since 419 is an odd prime.(

219

419

)
= (−1)

219−1
2

419−1
2

(
419

219

)
= −

(
200

219

)
= −

(
2

219

)(
100

219

)
= 1.

Since the Legendre symbol is 1, the equation is solvable.

(b) To solve this equation we would use the quadratic formula, which would ask us
to compute the solutions to y2 ≡ b2 − 4ac (mod 89). If this has solutions, then
the more complicated equation will have solutions. Here we have

b2 − 4ac ≡ 62 − 4 · 3 · 5 ≡ 36− 60 ≡ −24 (mod 89).

Therefore we are interested in the value of(
−24

89

)
=

(
−1

89

)(
2

89

)(
3

89

)(
4

89

)
= (−1)

3−1
2

89−1
2

(
89

3

)
=

(
2

89

)
= −1.

Since there is no square root, the quadratic equation is not solvable.

(c) Similarly to part (b), we are interested in figuring out if

b2 − 4ac ≡ 52 − 4 · 2 · (−9) ≡ 25 + 72 ≡ 97 ≡ −4 (mod 101)

is a square modulo 101. So we compute(
−4

101

)
=

(
−1

101

)(
4

101

)
= 1,

since 101 ≡ 1 (mod 4). Therefore the equation is solvable.

Section 9.4

1. (a) By Theorem 9.11, the class version, the congruence x2 ≡ −1 (mod 25) has either
no solution or two solutions, since 25 is a power of an odd prime and gcd(−1, 25) =
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1. It has two solutions if x2 ≡ −1 (mod 5) has a solution. Since this is the
equation x2 ≡ 4 (mod 5), which has solution x ≡ 2 (mod 5), we conclude that
x2 ≡ −1 (mod 25) has exactly 2 solutions. It is now a simple matter to verify
that the two given solutions are solutions: If x ≡ 7 (mod 25), then indeed x2 =
49 ≡ −1 (mod 25). Also, if x ≡ 18 ≡ −7 (mod 25), then x2 ≡ (−7)2 ≡ 49 ≡ −1
(mod 25).

(b) We lift x0 = 7 to x1 = 7 + 25y0, where x2
1 ≡ −1 (mod 125). We have

x2
1 = (7 + 25y0)

2 = 49 + 350y0 + 675y20 ≡ 49 + 100y0 (mod 125).

Therefore we must solve

−1 ≡ 49 + 100y0 (mod 125)

or
−50 ≡ 100y0 (mod 125).

100 is not a unit modulo 125, but gcd(100, 125) = 25 divides −50, so we may
divide all the way through by 25 to solve instead

−2 ≡ 4y0 (mod 5)

or, since 4 ≡ −1 (mod 5),

−y0 ≡ −2 (mod 5),

which has solution y0 ≡ 2 (mod 5) since −1 is a unit modulo 5. Therefore our
lift is x1 = 7 + 25 · 2 = 57.

Since 125 is a power of an odd prime, the quadratic congruence x2 ≡ −1 (mod 125)
has two solutions. One of them is x ≡ 57 (mod 125) and the other is x ≡ −57 ≡
68 (mod 125). Therefore the two solutions are

x ≡ 57 (mod 125) and x ≡ 68 (mod 125).

2. (a) See the solutions to Quiz 25.

(b) We first solve x2 ≡ 14 ≡ 4 (mod 5). This has solution x ≡ 2 (mod 5).

Our first lifting step is to take x0 = 2 and lift it to x1 = 2 + 5y0, where x2
1 ≡ 14

(mod 25). Squaring, we get

x2
1 = (2 + 5y0)

2 = 4 + 20y0 + 25y20 ≡ 4 + 20y0 (mod 25).

Therefore we must solve

14 ≡ 4 + 20y0 (mod 25)
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or
10 ≡ 20y0 (mod 25).

Dividing through by gcd(25, 20) = 5 (since 20 is not a unit we may not divide by
20), we get the equation

2 ≡ 4y0 (mod 5),

and since 4 ≡ −1 (mod 5), this has solution y0 ≡ −2 ≡ 3 (mod 5). Therefore
our lift is x1 = 2 + 5 · 3 = 17 (mod 25).

Our second lifting step is to take x0 = 17 and lift it to x1 = 17 + 25y0, where
x2
1 ≡ 14 (mod 125). Squaring, we get

x2
1 = (17 + 25y0)

2 = 289 + 850y0 + 625y20 ≡ 39 + 100y0 (mod 125).

Therefore we must solve

14 ≡ 39 + 100y0 (mod 125)

or
−25 ≡ 100y0 (mod 125).

This time gcd(100, 125) = 25, so we divide all the way though by 25 to get

−1 ≡ 4y0 (mod 5).

Since 4 ≡ −1 (mod 5), this has solution y0 ≡ 1 (mod 5), and the lift is x1 =
17 + 25 = 42.

Therefore the two solutions to this quadratic congruence are

x ≡ 42 (mod 125) and x ≡ −42 ≡ 83 (mod 125).

(c) We begin by solving x2 ≡ 2 (mod 7). This can be done by exhausting all possibil-
ities for x: If x ≡ 1 (mod 7), then x2 ≡ 1 (mod 7); if x ≡ 2 (mod 7), then x2 ≡ 4
(mod 7); if x ≡ 3 (mod 7), then x2 ≡ 2 (mod 7). Therefore x ≡ 3 (mod 7) is a
solution.

Our first lifting step is to lift x0 = 3 to x1 = 3 + 7y0, where x2
1 ≡ 2 (mod 49).

Squaring, we get

x2
1 = (3 + 7y0)

2 = 9 + 42y0 + 49y20 ≡ 9 + 42y0 (mod 49).

Therefore we must solve

2 ≡ 9 + 42y0 (mod 49)

or
−7 ≡ 42y0 (mod 49).
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Since gcd(42, 49) = 7, we divide all the way through by 7 to get

−1 ≡ 6y0 (mod 7).

Since 6 ≡ −1 (mod 7), and −1 is a unit modulo 7, this has solution

y0 ≡ 1 (mod 7).

Therefore our lift is x1 = 3+7·1 = 10. Note that indeed 102 = 100 ≡ 2 (mod 49).

Our second lifting is to take x1 = 10 and lift it to x1 = 10 + 49y0, where x2
1 ≡ 2

(mod 343). Squaring, we get

x2
1 = (10 + 49y0)

2 = 100 + 980y0 + 74y20 ≡ 100 + 294y0 (mod 343).

Therefore we must solve

2 ≡ 100 + 294y0 (mod 343)

or
−98 ≡ 294y0 (mod 343).

Since 294 = 7 · 42 = 7 · 7 · 6, gcd(294, 343) = 49 and we may divide all the way
through by 49 to get

−2 ≡ 6y0 (mod 7).

Again, since 6 ≡ −1 (mod 7) and −1 is a unit modulo 7, we get the solution

y0 ≡ 2 (mod 7).

Therefore our lift is x1 = 10 + 49 · 2 = 10 + 98 = 108.

The two solutions to this quadratic congruence are thus

x ≡ 108 (mod 343) and x ≡ −108 ≡ 235 (mod 343).

9. (a) We first consider the equation

x2 ≡ 3 (mod 112 · 232).

To solve this equation, we would solve

x2 ≡ 3 (mod 112) and x2 ≡ 3 (mod 232).

Since these are both odd prime powers and the equations are of the form x2 ≡ a
(mod pk) with gcd(a, p) = 1, each equation has either 0 or 2 solutions. The first
equation has two solutions if and only if

(
3
11

)
= 1, so we compute this symbol:(

3

11

)
= (−1)

3−1
2

11−1
2

(
11

3

)
= −

(
2

3

)
= 1.
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The second equation has two solutions if and only if
(

3
23

)
, so now compute this

new symbol: (
3

23

)
= (−1)

3−1
2

23−1
2

(
23

3

)
= −

(
2

3

)
= 1.

This second equation has two solutions, therefore the equation x2 ≡ 3 (mod 112 ·
232) has 2 · 2 = 4 solutions.

We now consider the equation

x2 ≡ 9 (mod 23 · 3 · 52).

This time we would need to solve

x2 ≡ 9 (mod 23), x2 ≡ 9 (mod 3) and x2 ≡ 9 (mod 52).

The first equation, x2 ≡ 9 (mod 23), has 4 solutions by Theorem 9.12 since 9 ≡ 1
(mod 8).

The second equation, x2 ≡ 9 ≡ 0 (mod 3) has the unique solution x ≡ 0 (mod 3).

The third equation, x2 ≡ 9 (mod 25) has either 0 or 2 solutions, but since we see
x ≡ 3 (mod 25) is a solution, the equation must have 2 solutions.

Therefore, the equation x2 ≡ 9 (mod 23 · 3 · 52) has 4 · 1 · 2 = 8 solutions.

We take this opportunity to note that x ≡ 3 (mod 23 · 3 · 52) and x ≡ −3
(mod 23 · 3 · 52) will be among those, but we must use the Chinese Remainder
Theorem to find the others. Their relationship to 3 and −3 is not straightforward
to see with it.

(b) To find the 8 solutions, we solve the equations

x2 ≡ 9 (mod 23), x2 ≡ 9 (mod 3) and x2 ≡ 9 (mod 52).

The first equation, x2 ≡ 9 ≡ 1 (mod 23), has 4 solutions as stated above. We
know that one of them is x ≡ 1 (mod 8), and we now how to make the other
three out of this solution: They are x ≡ −1 ≡ 7 (mod 8), x ≡ 1 + 4 ≡ 5 (mod 8)
and x ≡ −5 ≡ 3 (mod 8).

The second equation has unique solution x ≡ 0 (mod 3), as stated above.

The third equation has two solutions, one of them is x ≡ 3 (mod 25). We know
that the other is x ≡ −3 ≡ 22 (mod 25).

Now, to be explicit, the 8 solutions are the 8 solutions to these 8 Chinese Remain-
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der problems:

x ≡ 1 (mod 8), x ≡ 0 (mod 3), and x ≡ 3 (mod 25)

x ≡ 1 (mod 8), x ≡ 0 (mod 3), and x ≡ 22 (mod 25)

x ≡ 3 (mod 8), x ≡ 0 (mod 3), and x ≡ 3 (mod 25)

x ≡ 3 (mod 8), x ≡ 0 (mod 3), and x ≡ 22 (mod 25)

x ≡ 5 (mod 8), x ≡ 0 (mod 3), and x ≡ 3 (mod 25)

x ≡ 5 (mod 8), x ≡ 0 (mod 3), and x ≡ 22 (mod 25)

x ≡ 7 (mod 8), x ≡ 0 (mod 3), and x ≡ 3 (mod 25)

x ≡ 7 (mod 8), x ≡ 0 (mod 3), and x ≡ 22 (mod 25)

We note that in the notation of the Chinese Remainder Theorem, Ni and xi do
not depend on ai. We also note that since in all cases a2 = 0, we do not need N2

and x2. Therefore we quickly find N1, x1, N3 and x3 once and for all.

We have that N1 = 3 ·125 = 375 and x1 is a solution to 375x1 ≡ 1 (mod 8). Since
375 ≡ 7 ≡ −1 (mod 8), we can choose x1 = −1.

We have that N3 = 8 · 3 = 24 and x3 is a solution to 24x3 ≡ 1 (mod 25). Since
24 ≡ −1 (mod 25), again we can choose x3 = −1.

Therefore, for each pair (a1, a3) (since a2 is always 0), the solution we seek is

x ≡ −375a1 − 24a3 (mod 600).

Going through each of the possibilities above in order, we get

x ≡ 153 (mod 600)

x ≡ 297 (mod 600)

x ≡ 3 (mod 600)

x ≡ 147 (mod 600)

x ≡ 453 (mod 600)

x ≡ 597 (mod 600)

x ≡ 303 (mod 600)

x ≡ 447 (mod 600).

We note that these form 4 pairs of solutions (xi,−xi), with x1 = 3 (−3 ≡
597 (mod 600)), x2 = 147 (−147 ≡ 453 (mod 600)), x3 = 153 (−153 ≡ 447
(mod 600)), and x4 = 297 (mod 600) (−297 ≡ 303 (mod 600)).

One way we could think of these solutions is that they are all lifts of ±3 modulo
150. This could be because 150 is the largest factor of 600 where x2 ≡ 9 (mod n)
has only two solutions. I am not sure because I would have to prove a theorem to
check it, but it’s possible (likely?) that the solutions always arrange themselves
that way.
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