Math 255 - Spring 2017
Answers to selected suggested problems
Problems between March 1 and April 12 (Exam 2)
Please note: If there are any typos, please post about them on Piazza. The latest corrections to the solutions will be available there.

Section 5.2

10. (a) Using the Corollary, if p is a prime $a \equiv a^{p} \equiv b^{p} \equiv b(\bmod p)$
11. (a) Each term in the sum is congruent 1 modulo p, so this is $(p-1) \cdot 1 \equiv-1(\bmod p)$
(b) The sum is congruent to $1+2+\cdots+(p-1)=\frac{p(p-1)}{2}$. Since p is odd, 2 divides $p-1$ so $\frac{p(p-1)}{2}=p k$ for k an integer, and is therefore congruent to 0 modulo p.
12. Use the Chinese Remainder Theorem to consider the congruence first modulo p and then modulo q.

Section 5.3

1. (a) Similar to Homework 6, problem 1, the case for $p=23$.
2. The pairs are $(2,12),(3,8),(4,6),(5,14),(7,10),(9,18),(11,21),(13,16),(15,20),(17,19)$
3. To prove the hint, replace each even integer a with the odd integer $-(p-a) \equiv a$ $(\bmod p)$. Collecting the negative signs, this will give a factor of $(-1)^{(p-1) / 2}$.
4. In the proof of Theorem 5.5, it says that

$$
-1 \equiv\left(\left(\frac{p-1}{2}\right)!\right)^{2}
$$

so the answer they are looking for is

$$
\pm\left(\frac{p-1}{2}\right)!
$$

When $p=29$, this is 12 and 17 , and when $p=37$ this is 6 and 31 .

Section 6.1

2. We have $12378=2 \cdot 3 \cdot 2063$ and $3054=2 \cdot 3 \cdot 509$ so $\operatorname{gcd}(12378,3054)=6$ and $\operatorname{lcm}(12378,3054)=2 \cdot 3 \cdot 509 \cdot 2053=6300402$.
3. (a) Recall that if $n=p_{1}^{k_{1}} \ldots p_{r}^{k_{r}}$ with $k_{i} \geq 1$, then $\tau(n)=\left(k_{1}+1\right) \cdots\left(k_{r}+1\right)$. Note that we cannot have $k_{i}+1=1$, because $k_{i} \neq 0$. Therefore if $\tau(n)=10$, then either n is divisible by one prime with $k_{1}=9$ or n is divisible by two primes with $k_{1}=1$ and $k_{2}=4$. Therefore n is of the form p^{9} for p prime or of the form $p_{1} p_{2}^{4}$, for p_{1} and p_{2} distinct primes. The smallest integer for which $\tau(n)=10$ is $48=3 \cdot 2^{4}$.
4. See Homework $6 \# 4$ (a) plus the proof in class that $f(n)=n$ is multiplicative.
5. Similar to Homework $6 \# 4$ (a)

Section 6.2

1. (a) One of $n, n+1, n+2, n+3$ must be divisible by $4=2^{2}$.

Section 7.2

1. $\varphi(1001)=720, \varphi(5040)=1152, \varphi(36000)=9600$.
2. (b) First note that if p is any prime, then

$$
1-\frac{1}{p} \geq 1-\frac{1}{2}=\frac{1}{2}
$$

because $p \geq 2$.
Then if $n=p_{1}^{k_{1}} \ldots p_{r}^{k_{r}}$ with $k_{i} \geq 1$, then

$$
\begin{aligned}
\phi(n) & =n\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{r}}\right) \\
& \geq n\left(\frac{1}{2}\right)^{r}=\frac{n}{2^{r}}
\end{aligned}
$$

Section 7.3

3. For each $n=5,7,8,9,13$ separately, show that $a^{15} \equiv a^{3}(\bmod n)$. For $n=5$, this follows from $a^{5} \equiv a(\bmod 5)($ Corollary on page 88$)$ then cube both sides. For $n=7$, Corollary again then square both sides and multiply both sides by a. For $n=13$, Corollary once more then multiply both sides by a^{2}. For $n=8$ you must do a even and a odd separately and the argument is similar to Homework $8 \# 2$. Finally for $n=9$ you must do $\operatorname{gcd}(a, 3)=1$ separately from $\operatorname{gcd}(a, 3)=3$; when $\operatorname{gcd}(a, 3)=1$, $a^{7} \equiv a(\bmod 9)$ then square and multiply both sides by a.
4. Do m and n separately then Chinese Remainder Theorem. We do it for m, it is exactly the same for $n: m^{\phi(n)} \equiv 0(\bmod m)$ since $\phi(n) \geq 1$ and $n^{\phi(m)} \equiv 1(\bmod m)$ since $\operatorname{gcd}(m, n)=1$.
5. See the solutions to Quiz 18.

Section 8.1

1. (a) 2 has order 8,3 has order 16 and 5 has order 16 (so 3 and 5 are primitive roots of 17 but 2 is not)
(b) 2 has order 18, 3 has order 18 and 5 has order 9 (so 2 and 3 are primitive roots of 19 but 5 is not)
(c) 2 has order 11, 3 has order 11 and 5 has order 22 (so 5 is a primitive root of 23 but 2 and 3 are not)
2. (a) If the order of a^{h} were smaller then the order of a would be smaller.
(b) $x=a^{k}$ is such that $x^{2} \equiv 1(\bmod p)$, but since p is a prime this quadratic equation only has solutions $x \equiv 1(\bmod p)$ and $x \equiv-1(\bmod p)$. If x were $1(\bmod p)$, then the order of a would be k, not $2 k$.
3. Let $m=2^{n}-1$. Then $2^{n} \equiv 1(\bmod m)$ but no smaller power of 2 is 1 modulo m, because if say 2^{k} for $1 \leq k<m$ were 1 modulo m, then m would divide $2^{k}-1$, but $0<2^{k}-1<2^{n}-1=m$ which is a contradiction. Therefore 2 has order n modulo $m=2^{n}-1$. By Theorem 8.1, this means that n divides $\varphi\left(2^{n}-1\right)$.
(b) The orders are $4,2,4,4,2,4$, and 2 respectively, whereas $\phi(15)=8$.
4. (a) 10 only has two primitive roots and they are 3 and 7 .
(b) $\varphi(17)=16$, so by Theorem 8.33^{h} has order 16 if and only if $\operatorname{gcd}(h, 16)=1$. Therefore the other primitive roots are $3^{3} \equiv 10(\bmod 17), 3^{5} \equiv 5(\bmod 17)$, $3^{7} \equiv 11(\bmod 17), 3^{9} \equiv 14(\bmod 17), 3^{11} \equiv 7(\bmod 17), 3^{13} \equiv 12(\bmod 17)$, and $3^{15} \equiv 6(\bmod 17)$.

Section 8.4

1. The primitive roots of 13 are $2,2^{5} \equiv 6(\bmod 13), 2^{7} \equiv 11(\bmod 13)$ and $2^{11} \equiv 7$ (mod 13). Using brute force (i.e. computing all of the powers of these primitive roots until we get 5$)$, we have that $\log _{2} 5 \equiv \log _{6} 5 \equiv 9(\bmod 12)$ and $\log _{11} 5 \equiv \log _{7} 5 \equiv 3$ $(\bmod 12)$.
2. (a) $x \equiv 3,5,14,12(\bmod 17)$
(b) $x \equiv 5(\bmod 17)$
(c) $x \equiv 3,10,5,11,14,7,12,6(\bmod 17)$
(d) $x \equiv 1(\bmod 16)$
8.4
\#3a)

$$
\begin{aligned}
& x \equiv 3^{k} \bmod 17 \quad x^{12} \equiv 3^{12 k} \bmod 17 \\
& 13 \equiv 3^{4} \bmod 17 \\
& 3^{12 k} \equiv 3^{4} \bmod 17 \\
& \Rightarrow 12 k \equiv 4 \bmod 16 \quad \operatorname{gcd}(12,16)=4 \\
& \Rightarrow 3 k \equiv 1 \bmod 4 \\
& \Rightarrow k \equiv 3 \bmod 4 \\
& \Rightarrow k \equiv 3,7,11,15 \bmod 16
\end{aligned}
$$

so $x \equiv 10,11,7,6 \bmod 17$
b)

$$
\begin{aligned}
& x \equiv 3^{k} \bmod 17 x^{5} \equiv 3^{5 k} \bmod 17 \\
& 8 \equiv 3^{10} \bmod 17 \\
& 10 \equiv 3^{3} \bmod 17 \\
& 3^{10} \cdot 3^{5 k} \equiv 3^{3} \bmod 17 \\
& 5 k+10 \equiv 3 \bmod 16 \\
& 5 k \equiv-7 \bmod 16 \\
& k \equiv 5 \bmod 16 \\
& \text { So } x \equiv 5 \bmod 17
\end{aligned}
$$

c)

$$
\begin{aligned}
& x \equiv 3^{k} \bmod 17 \quad x^{8} \equiv 3^{8 k} \bmod 17 \\
& 9 \equiv 3^{2} \bmod 17 \\
& 8 \equiv 3^{10} \bmod 17 \\
& 3^{2} \cdot 3^{8 k} \equiv 3^{10} \bmod 17 \\
& 8 k+2 \equiv 10 \bmod 16 \\
& 8 k \equiv 8 \bmod 16 \operatorname{gcd}(8,16)=8 \\
& k \equiv 1 \bmod 2 \\
& k \equiv 1,3,5,7,9,11,13,15 \bmod 16 \\
& x \equiv 3,10,5,11,14,7,12,6 \bmod 17
\end{aligned}
$$

d) Because 7 is also a primitive root of in we can do

$$
\begin{aligned}
7^{x} & \equiv 7 \bmod 17 \\
\Rightarrow \quad x & \equiv 1 \bmod 16
\end{aligned}
$$

If it were not this would not work!
Example: $\quad 9^{x} \equiv 9 \bmod 17$

$$
\Rightarrow x \equiv 1 \bmod 8
$$

since 9 has order 8 not 16 .

