Math 255 - Spring 2017
Answers to selected suggested problems
Problems up to March 1 (Exam 1)
Please note: If there are any typos, please post about them on Piazza. The latest corrections to the solutions will be available there.

Section 1.1

5. (b) See Quiz 1 solutions

Section 2.2

2. See Quiz 3 solutions

Section 2.3

14. (b) We have that

$$
-7(5 a+2)+5(7 a+3)=1,
$$

and therefore the equation $(5 a+2) x+(7 a+3) y=1$ has a solution for every integer a. (This solution is $x=-7, y=5$.) By Theorem 2.4, this implies that $\operatorname{gcd}(5 a+2,7 a+3)=1$.

Section 2.4

1. $\operatorname{gcd}(143,227)=1, \operatorname{gcd}(306,657)=9$, and $\operatorname{gcd}(272,1479)=17$
2. (a) $\operatorname{gcd}(56,72)=8$ and a solution is $x_{0}=4, y_{0}=-3$
(b) $\operatorname{gcd}(24,138)=6$ and a solution is $x_{0}=6, y_{0}=-1$
(c) $\operatorname{gcd}(119,272)=17$ and a solution is $x_{0}=7, y_{0}=-3$
(d) $\operatorname{gcd}(1769,2378)=29$ and a solution is $x_{0}=39, y_{0}=-29$

Section 2.5

1. Equation (a) cannot be solved because 3 does not divide 22, equation (b) can be solved because $\operatorname{gcd}(33,14)=1$, equation (c) cannot be solved because 7 does not divide 93 .
2. (a) $x=20+9 t, y=-15-7 t, t \in \mathbb{Z}$
(b) $x=18+23 t, y=-3-4 t, t \in \mathbb{Z}$
(c) $x=176+35 t, y=-1111-221 t, t \in \mathbb{Z}$
3. (a) The only solution in the positive integers is $x=1, y=6$
(c) There are no positive integer solutions

Section 3.1

5. (a) See Quiz 8 solutions

Section 3.2

1. 701 and 1009 are both prime
2. The primes between 100 and 200 are: $101,103,107,109,113,127,131,137,139,149,151$, $157,163,167,173,179,181,191,193,197$, and 199

Section 4.2

11. We have

$$
\begin{gathered}
2^{2}=4 \quad(\bmod 11) \\
2^{3}=8 \quad(\bmod 11) \\
2^{4}=16 \equiv 5 \quad(\bmod 11) \\
2^{5}=2^{4} \cdot 2 \equiv 5 \cdot 2=10 \quad(\bmod 11) \\
2^{6}=2^{5} \cdot 2 \equiv 2 \cdot 10=20 \equiv 9 \quad(\bmod 11) \\
2^{7}=2^{6} \cdot 2 \equiv 9 \cdot 2=18 \equiv 7 \quad(\bmod 11) \\
2^{8}=2^{7} \cdot 2 \equiv 7 \cdot 2=14 \equiv 3 \quad(\bmod 11) \\
2^{9}=2^{8} \cdot 2 \equiv 3 \cdot 2=6 \quad(\bmod 11)
\end{gathered}
$$

By inspection this covers all of the congruence classes modulo 11 between 3 and 10, inclusively. Therefore if we add in 0,1 and 2 , this covers all of the congruence classes modulo 11 and the set is a complete set of residues modulo 11 .
However, we have

$$
\begin{gathered}
1^{2}=1 \quad(\bmod 11) \\
2^{2}=4 \quad(\bmod 11) \\
3^{2}=9 \quad(\bmod 11) \\
4^{2}=16 \equiv 5 \quad(\bmod 11) \\
5^{2}=25 \equiv 3 \quad(\bmod 11) \\
6^{2} \equiv(-5)^{2}=5^{2} \equiv 3 \quad(\bmod 11) \\
7^{2} \equiv(-4)^{2} \equiv 5 \quad(\bmod 11) \\
8^{2} \equiv(-3)^{2}=9 \quad(\bmod 11) \\
9^{2} \equiv(-2)^{2}=4 \quad(\bmod 11) \\
10^{2} \equiv(-1)^{2}=1 \quad(\bmod 11)
\end{gathered}
$$

We see that we have not obtained the congruence classes $2,6,7$, and 8 modulo 11 . The squares do not form a complete set of residues modulo 11.

Section 4.4

1. (a) $x \equiv 18(\bmod 29)$
(b) $x \equiv 16(\bmod 26)$
(c) $x \equiv 6,13,20(\bmod 21)$
(d) No solution because 6 does not divide 8
(e) $x \equiv 45,94(\bmod 98)$
(f) $x \equiv 16,59,102,145,188,231,274(\bmod 301)$
