
Math 255 - Spring 2017
Review Homework Solutions

All problems that are not covered here are covered either in Answers to selected suggested
problems 1 (posted on March 1), Answers to selected suggested problems 2 (posted on April
12) or Solutions to suggested problems (posted at the bottom with the final exam material).
Please note that some full solutions are sketched out by hand at the end of Answers to
selected suggested problems 1 and 2.

Section 3.1

5. (b) If gcd(a, b) = p, then both a and b are divisible by p, but at least one of a or b

is not divisible by p

2. Without loss of generality let that one be a, so a = pN ,
with gcd(p,N) = 1, and b = p

k
M , with k � 1 and gcd(p,M) = 1. Furthermore

since gcd(a, b) = p, gcd(N,M) = 1 since a and b have no further prime factors in
common. Then a

2 = p

2
N

2, a3 = p

3
N

3, and b

2 = p

2k
M

2. Therefore gcd(a2, b2) =
p

2, gcd(a2, b) = p if k = 1 or p

2 if k � 2, and gcd(a3, b2) = p

2 if k = 1 or p

3 if
k � 2.

Section 4.4

4. Only part (a) has numbers that are reasonable for the final exam.

(a) We have a1 = 1, N1 = 35 and x1 = 2, a2 = 2, N2 = 21 and x2 = 1, and a3 = 3,
N3 = 15 and x3 = 1. Therefore the solution is x ⌘ 70 + 42 + 45 ⌘ 157 ⌘ 52
(mod 105).

(b) We have a1 = 5, N1 = 899 and x1 = 7, a2 = 14, N2 = 341 and x2 = 4, and a3 = 15,
N3 = 319 and x3 = 7. Therefore the solution is x ⌘ 31465 + 19096 + 33495 ⌘
84056 ⌘ 4944 (mod 9889).

(c) We have a1 = 5, N1 = 187 and x1 = 1, a2 = 4, N2 = 102 and x2 = 4, and a3 = 3,
N3 = 66 and x3 = 8. Therefore the solution is x ⌘ 935+1632+1584 ⌘ 4151 ⌘ 785
(mod 1122).

(d) First we put the system in the correct form to apply the Chinese Remainder
Theorem:

x ⌘ 3 (mod 5), x ⌘ 3 ⌘ 1 (mod 2),

x ⌘ 2 (mod 7), x ⌘ 81 ⌘ 4 (mod 11)

(Note that instead of x ⌘ 1 (mod 2), we could put either x ⌘ 1 (mod 6) or
x ⌘ 3 (mod 6) or x ⌘ 5 (mod 6) and solve three di↵erent Chinese Remainder
problems.)
We have a1 = 3, N1 = 154 and x1 = �1, a2 = 1, N2 = 385 and x2 = 1, a3 = 2,
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N3 = 110 and x3 = 3, and a4 = 4, N4 = 70 and x4 = 3. Therefore the solution is
x ⌘ �462 + 385 + 660 + 840 ⌘ 1423 ⌘ 653 (mod 770).
(If we had solve the three Chinese Remainder Theorem problems we would have
obtained 653, 1423 and 2193 modulo 2310, which are the three lifts of the single
solution modulo 770 that we obtained. In that sense, the two ways of seeing the
problem really give the same solution.)

Section 6.1

19. Since both f and g are multiplicative, whenever gcd(m,n) = 1, we have f(mn) =
f(m)f(n) and g(mn) = g(m)g(n). Therefore if gcd(m,n) = 1 we have

fg(mn) = f(mn)g(mn) by definition of the function fg

= f(m)f(n)g(m)g(n) since f and g are multiplicative

= f(m)g(m)f(n)g(n) by commutativity of multiplication

= fg(m)fg(n) by definition of the function fg

and fg is multiplicative. Similarly

f

g

(mn) =
f(mn)

g(mn)
by definition of the function

f

g

=
f(m)f(n)

g(m)g(n)
since f and g are multiplicative

=
f(m)

g(m)

f(n)

g(n)
by commutativity of multiplication

=
f

g

(m)
f

g

(n) by definition of the function
f

g

and f
g is multiplicative as well, assuming that g does not take the value 0.

20. Note that this question requires the definition of ⌧ and its formula in Theorem 6.2,
which you are not responsible for. However, given a multiplicative function and a
formula for this function (or perhaps after you have been asked to computed a closed
formula for the function) you are responsible for being able to solve a problem similar
to this problem. In other words, you should know how to show that a function is
multiplicative and how to show that two multiplicative functions are equal.

(a) Let gcd(m,n) = 1. Write m = p

k1
1 . . . p

kr
r for the factorization of m into primes.

Then r = !(m). Similarly, if the factorization of n into primes is n = q

`1
1 . . . q

`s
s ,

!(n) = s. If gcd(m,n) = 1, then we have pi 6= qj for all i and j (none of the
primes in the two factorizations coincide). Therefore, the factorization of mn into
distinct primes is p

k1
1 . . . p

kr
r q

`1
1 . . . q

`s
s , and !(mn) = r + s. (This is because the

primes are distinct! Otherwise there would be collapsing. For example, !(2) = 1
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and !(6) = 2 but !(12) = 2 since 2 and 6 share a prime factor that gets counted
only once in 12.) Therefore

2!(mn) = 2r+s = 2r2s = 2!(m) · 2!(n).

(b) We first argue that both ⌧(n2) and
P

d|n 2
!(d) are multiplicative. For

P
d|n 2

!(d),

we have by part (a) that 2!(n) is multiplicative, and therefore
P

d|n 2
!(d) is mul-

tiplicative also by the Big Theorem (Theorem 6.4). For ⌧(n2), we note that if
gcd(m,n) = 1, then gcd(m2

, n

2) = 1 as well. Therefore

⌧((mn)2) = ⌧(m2
n

2) = ⌧(m2)⌧(n2).

Now if two functions are multiplicative, as shown in the homework it su�ces to
show that they agree on prime powers to show that they always agree. Therefore
let p be a prime and k � 1 be an integer. We have

X

d|pk
2!(d) =

kX

j=0

2!(p
j)

= 1 + k · 2 since 2!(1) = 20 = 1 and otherwise 2!(p
j) = 2

= 2k + 1

= ⌧(p2k) by Theorem 6.2

= ⌧((pk)2),

and this completes the proof.

Section 7.2

4. See solutions to Homework 7, problem 3.

Section 8.1

1. See Answers to selected suggested problems 2, but do not forget that to show that a
number a has order k, the most important thing is to show that no positive integer
less than k gives a` ⌘ 1 (mod n).

Extra problems:

1. To check if 113 is prime, it su�ces to check if it is divisible by a prime number that is
strictly less than

p
113. Those primes are 2, 3, 5 and 7. Since the last digits of 113 is

3, we see that it is not divisible by 2 or 5. The sum of the digits of 113 is 5, so 113 is
not divisible by 3 either. Finally, 113 = 70 + 43 = 70 + 42 + 1 ⌘ 1 (mod 7), so 113 is
not divisible by 7 either. Therefore 113 is prime.
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2. Since the congruences are not of the form x ⌘ ai (mod ni), we must first write them
in that form before applying the Chinese Remainder Theorem recipe. To do that, we
will need 2�1 (mod 3), which is 2, 3�1 (mod 4), which is 3 and 3�1 (mod 5), which is
2. (All three of these inverses can either be found by using the Euclidean algorithm
as in Exam 1, problem 1b), or by inspection since the modulus of the congruence is so
small.)

Therefore we have

2x ⌘ 1 (mod 3)

2 · 2x ⌘ 2 · 1 (mod 3)

x ⌘ 2 (mod 3)

as well as

3x ⌘ 2 (mod 4)

3 · 3x ⌘ 3 · 2 (mod 4)

x ⌘ 2 (mod 4)

and

3x ⌘ 2 (mod 5)

2 · 3x ⌘ 2 · 2 (mod 5)

x ⌘ 4 (mod 5)

We apply the CRT algorithm to

x ⌘ 2 (mod 3)

x ⌘ 2 (mod 4)

x ⌘ 4 (mod 5)

.

n1 = 3 We have a1 = 2 and N1 = 20. To find x1 we must solve N1x1 ⌘ 1 (mod 3).
Since 20 ⌘ 2 (mod 3), we solve 2x1 ⌘ 1 (mod 3), and the solution is x1 = 2.

n2 = 4 We have a2 = 2 and N2 = 15. To find x2 we must solve N2x2 ⌘ 1 (mod 4).
Since 15 ⌘ 3 (mod 4), we solve 3x2 ⌘ 1 (mod 4), and the solution is x2 = 3.

n3 = 5 We have a3 = 4 and N3 = 12. To find x3 we must solve N3x3 ⌘ 1 (mod 5).
Since 12 ⌘ 2 (mod 5), we solve 2x3 ⌘ 1 (mod 5), and the solution is x3 = 3.

Putting it all together, the solution is

x ⌘ 2 · 20 · 2+2 · 15 · 3+4 · 12 · 3 ⌘ 80+90+144 ⌘ 20+30+24 ⌘ 74 ⌘ 14 (mod 60).
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3. (a) We have ✓
�157

241

◆
=

✓
�1

241

◆
·
✓
157

241

◆
,

and we compute each symbol separately.

Since 241 ⌘ 1 (mod 4),
� �1
241

�
= 1.

For the other symbol we use Quadratic Reciprocity:
✓
157

241

◆✓
241

157

◆
= (�1)(157�1)(241�1)/4 = (�1)78·120 = 1,

so
�
157
241

�
and

�
241
157

�
have the same sign.

Now
✓
241

157

◆
=

✓
84

157

◆
=

✓
4

157

◆✓
3

157

◆✓
7

157

◆
=

✓
3

157

◆✓
7

157

◆
,

since 4 is a square in the integers, so
�

4
157

�
= 1.

The two remaining Legendre symbols are again computed using Quadratic Reci-
procity: ✓

3

157

◆✓
157

3

◆
= (�1)(3�1)(157�1)/4 = (�1)1·78 = 1,

and ✓
157

3

◆
=

✓
1

3

◆
= 1.

Therefore ✓
3

157

◆
= 1.

Also, ✓
7

157

◆✓
157

7

◆
= (�1)(7�1)(157�1)/4 = (�1)3·78 = 1,

and ✓
157

7

◆
=

✓
3

7

◆
.

This last symbol can be computed by hand since 7 is small, or by using Quadratic
Reciprocity one last time:

✓
3

7

◆✓
7

3

◆
= (�1)(3�1)(7�1)/4 = (�1)1·3 = �1,

and ✓
7

3

◆
=

✓
1

3

◆
= 1.
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Therefore ✓
3

7

◆
= �1

and ✓
7

157

◆
= �1.

Therefore we have ✓
241

157

◆
= 1 ·�1 = �1,

so ✓
157

241

◆
= �1

and in conclusion ✓
�157

241

◆
= �1.

(b) We first factor 177 into primes:
✓
177

179

◆
=

✓
3

179

◆✓
59

179

◆
.

And now we can use Quadratic Reciprocity to compute each symbol.

We have ✓
3

179

◆✓
179

3

◆
= (�1)(3�1)(179�1)/4 = (�1)1·89 = �1

and ✓
179

3

◆
=

✓
2

3

◆
= �1,

so ✓
3

179

◆
= 1.

Also, ✓
59

179

◆✓
179

59

◆
= (�1)(59�1)(179�1)/4 = (�1)29·89 = �1,

and ✓
179

59

◆
=

✓
2

59

◆
.

Since 59 ⌘ 3 (mod 8),
�

2
59

�
= �1, and

✓
59

179

◆
= 1.

Putting the two together, ✓
177

179

◆
= 1 · 1 = 1.
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4. (a) Here n = 64 = 26. Therefore we solve x

2 ⌘ 17 ⌘ 1 (mod 8) and lift from there,
using the p = 2 lifting technique.

Base case We solve x

2 ⌘ 17 ⌘ 1 (mod 8). This has solution x ⌘ 1 (mod 8).

First lift: From modulo 8 to modulo 16 We recall the that the lifting step is pe-
culiar when p = 2: We will “lower” our solution x ⌘ 1 (mod 8) to x ⌘ 1 (mod 4)
and lift that directly to a solution modulo 16. The lifting equation is therefore

x1 = 1 + 4y0,

and we wish that
x

2
1 ⌘ 17 ⌘ 1 (mod 16).

We notice in fact that the lift with y0 = 0 works, since x ⌘ 1 (mod 16) is a
solution to x

2 ⌘ 1 (mod 16). (This is not the only possible lift, but we only need
one to continue.)

Second lift: From modulo 16 to modulo 32 Again we “lower” our solution to x ⌘
1 (mod 8) and lift from there directly to a solution modulo 32. The lifting equa-
tion is

x1 = 1 + 8y0,

and we wish that
x

2
1 ⌘ 17 (mod 32).

We have

x

2
1 = (1 + 8y0)

2

= 1 + 16y0 + 64y20
⌘ 1 + 16y0 (mod 32).

Therefore we want to solve

17 ⌘ 1 + 16y0 (mod 32).

It is perhaps easy to see that y0 = 1 does the trick. (But it is not the only
solution! Thankfully we only need one lift to continue.) Our lift is therefore
x1 = 1 + 8y0 = 9.

Third lift: From modulo 32 to modulo 64 This time we “lower” our solution to
x ⌘ 9 (mod 16) and lift directly to a solution modulo 64. Note that this solution
modulo 16 is not the same solution we had earlier. That is normal and this is why
we did the step in the middle, to get x ⌘ 9 (mod 16), which really is a solution
to x

2 ⌘ 1 (mod 16). The problem is that we had the “wrong” solution earlier, a
solution that we couldn’t use in our lifting equation. This is why we have to do
this weird dance of taking a small step back at the lifting step.

Our lifting equation is
x1 = 9 + 16y0,
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and we wish that
x

2
1 ⌘ 17 (mod 64).

We have

x

2
1 = (9 + 16y0)

2

= 81 + 288y0 + 162y20
⌘ 17 + 32y0 (mod 64)

Therefore we want to solve

17 ⌘ 17 + 32y0 (mod 64),

which has as one of its solutions y0 = 0 (again, this is not the unique solution but
we only need one lift). Therefore the lift is x1 = 9.

Give all solutions Now that we have one solution to x

2 ⌘ 17 (mod 64), namely
x ⌘ 9 (mod 64), we can use our Theorem, which says that there are 4 solutions
in total, and the other three are x ⌘ �9 ⌘ 55 (mod 64), x ⌘ 9 + 32 ⌘ 41
(mod 64) and x ⌘ �41 ⌘ 23 (mod 64). Therefore the 4 solutions are 9, 23, 41
and 55 (mod 64).

(b) In this problem n = 81 = 34. Therefore we start by solving x

2 ⌘ 34 ⌘ 1 (mod 3)
and lift from there, using the p odd lifting technique.

Base case We solve x

2 ⌘ 34 ⌘ 1 (mod 3). This has solution x ⌘ 1 (mod 3).

First lift: From modulo 3 to modulo 9 This is the normal, vanilla lifting from 3
to 9. Our lifting equation is

x1 = 1 + 3y0

and we wish that
x

2
1 ⌘ 34 ⌘ 7 (mod 9).

We have

x

2
1 = (1 + 3y0)

2

= 1 + 6y0 + 9y20
⌘ 1 + 6y0 (mod 9),

so we must solve
7 ⌘ 1 + 6y0 (mod 9).

We see that one solution is y0 = 1, and since we only need one solution our lift
is x1 = 1 + 3 = 4. (In this case, this is not the only solution y0 (mod 9) to this
equation, but this is the only possible lift. This is di↵erent than the situation
above where there actually are two lifts for each solution.)
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Second lift: From modulo 9 to modulo 27 Our lifting equation is

x1 = 4 + 9y0,

and we wish that
x

2
1 ⌘ 34 ⌘ 7 (mod 27).

We have

x

2
1 = (4 + 9y0)

2

= 16 + 72y0 + 81y20
⌘ 16 + 18y0 (mod 27),

so we must solve
7 ⌘ 16 + 18y0 (mod 27).

This doesn’t have an obvious solution, so we solve it in the traditional way:

7 ⌘ 16 + 18y0 (mod 27)

�9 ⌘ 18y0 (mod 27)

�1 ⌘ 2y0 (mod 3)

2 ⌘ 2y0 (mod 3),

which has solution y0 = 1. Therefore the lift is x1 = 4 + 9 = 13.

Third lift: From modulo 27 to modulo 81 Our lifting equation is

x1 = 13 + 27y0

and we wish that
x

2
1 ⌘ 34 (mod 81).

We have

x

2
1 = (13 + 27y0)

2

= 169 + 702y0 + 272y20
⌘ 7 + 54y0 (mod 81),

so we must solve
34 ⌘ 7 + 54y0 (mod 81).

Again the solution is not obvious

34 ⌘ 7 + 54y0 (mod 81)

27 ⌘ 54y0 (mod 81)

1 ⌘ 2y0 (mod 3)

and this has solution y0 = 2. Therefore the lift is x1 = 13+ 27 · 2 = 13+ 54 = 67.

Give all solutions Since 81 is a power of an odd prime, there are two solutions and
they are x ⌘ 67 (mod 81) and x ⌘ �67 ⌘ 14 (mod 81). Therefore the solutions
are x ⌘ 14 and 67 (mod 81).
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(c) Here n = 135 = 33 ·5. Therefore we must solve x2 ⌘ 59 ⌘ 5 (mod 27) and x

2 ⌘ 1
(mod 5).

First equation x

2 ⌘ 5 (mod 27): We must start by solving x2 ⌘ 5 ⌘ 2 (mod 3).
This has no solution. Therefore x

2 ⌘ 5 (mod 27) has no solution and x

2 ⌘ 59
(mod 135) has no solution.

(d) For this equation it’s easy to see that x ⌘ 5 (mod 80) will be a solution, as well as
x ⌘ �5 ⌘ 75 (mod 80). However, there might be more solutions that are harder
to find; since 80 is not a power of a prime we don’t have an easy result giving us
all of the solutions in terms of these two solutions and it’s faster and safer to just
do all our steps.

Since n = 80 = 24 · 5, we must solve x

2 ⌘ 25 ⌘ 9 (mod 16) and x

2 ⌘ 25 ⌘ 0
(mod 5).

First equation x

2 ⌘ 9 (mod 16): It is easy to see the solution x ⌘ 3 (mod 16).
Since 16 = 24, we know that there are exactly 4 solutions and they are x ⌘ 3
(mod 16), x ⌘ �3 ⌘ 13 (mod 16), x ⌘ 3 + 8 ⌘ 11 (mod 16) and x ⌘ �3 + 8 ⌘ 5
(mod 16).

Second equation x

2 ⌘ 25 ⌘ 0 (mod 5): This has as its only solution x ⌘ 0
(mod 5).

Therefore the equation x

2 ⌘ 25 (mod 80) has 4 solutions, and they satisfy:

x ⌘ 3 (mod 16) and x ⌘ 0 (mod 5),

x ⌘ 5 (mod 16) and x ⌘ 0 (mod 5),

x ⌘ 11 (mod 16) and x ⌘ 0 (mod 5),

x ⌘ 13 (mod 16) and x ⌘ 0 (mod 5),

respectively. Now it’s time for some Chinese Remainder Theorem to figure out
what those are modulo 80.

For each of these four CRT problems, we will have N1 = 5 and x1 will be the
solution to 5x1 ⌘ 1 (mod 16). So we find 5�1 (mod 16). First we do division:
16 = 3 ·5+1. So 1 = 16�3 ·5 and 5�1 ⌘ �3 ⌘ 13 (mod 16). We will use x1 = �3
because it’s a smaller number in absolute value. In all of the CRT problems we
will also have a2 = 0, so N2 and x2 won’t matter.

With this done, it’s not so bad to get all of the answers:

For the first solution, a1 = 3, so

x ⌘ 3 · 5 · (�3) + 0 ⌘ �45 ⌘ 35 (mod 80).

For the second solution, a1 = 5, so

x ⌘ 5 · 5 · (�3) + 0 ⌘ �75 ⌘ 5 (mod 80).
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For the third solution, a1 = 11, so

x ⌘ 11 · 5 · (�3) + 0 ⌘ �165 ⌘ �5 ⌘ 75 (mod 80).

For the last solution, a1 = 13, so

x ⌘ 13 · 5 · (�3) + 0 ⌘ �195 ⌘ �35 ⌘ 45 (mod 80).

Therefore the four solutions are x ⌘ 5, 35, 45 and 75 (mod 80). We note that this
is x ⌘ ±5 (mod 40) but 40 is not a factor of 80 such that x2 ⌘ 25 (mod 40) has 2
solutions (the equation has four solutions, 5, 15, 25 and 35 (mod 40)). Therefore
the conjecture we made in the last problem of the suggested problems is false as
stated.

(e) To solve x

2 + 20x+ 30 ⌘ 0 (mod 105), we use the quadratic formula:

x ⌘ �b+ “
p
b

2 � 4ac”

2a
⌘ �20 + “

p
202 � 4 · 30”
2

⌘ �20 + “
p
280”

2
(mod 105).

To compute “
p
280” we must find all solutions to y

2 ⌘ 280 ⌘ 70 (mod 105).
Since 105 = 3 · 5 · 7, we must solve y

2 ⌘ 70 ⌘ 1 (mod 3), y2 ⌘ 70 ⌘ 0 (mod 5)
and y

2 ⌘ 70 ⌘ 0 (mod 7).

These can all be solved by inspection. The first equation has solutions y ⌘ 1
(mod 3) and y ⌘ 2 (mod 3), the second equation has solution y ⌘ 0 (mod 5) and
the last equation has solution y ⌘ 0 (mod 7). Therefore y

2 ⌘ 70 (mod 105) has
2 solutions, and they satisfy

y ⌘ 1 (mod 3), y ⌘ 0 (mod 5), and y ⌘ 0 (mod 7),

y ⌘ 2 (mod 3), y ⌘ 0 (mod 5), and y ⌘ 0 (mod 7),

respectively.

We use the Chinese Remainder Theorem to obtain the solution modulo 105. For
both of the problems we will have N1 = 35 and x1 such that 35x1 ⌘ 1 (mod 3),
or 2x1 ⌘ 1 (mod 3). The solution is x1 = 2. Also for both of the problems we
will have a2 = a3 = 0, so we will not need to worry about N2, x2, N3 or x3.

Now we get the answers, the first one has a1 = 1, so

y ⌘ 1 · 35 · 2 + 0 + 0 ⌘ 70 (mod 105).

The second has a1 = 2, so

y ⌘ 2 · 35 · 2 + 0 + 0 ⌘ 140 ⌘ 35 (mod 105).

We now plug these into the quadratic formula. The first solution is

x ⌘ �20 + 70

2
⌘ 50

2
⌘ 25 (mod 105)
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and the second solution is

x ⌘ �20 + 35

2
⌘ 15

2
(mod 105).

To perform the division by 2 we must find 2�1 (mod 105). Since 2 · 53 = 106 ⌘ 1
(mod 105), 2�1 ⌘ 53 (mod 105). Therefore the second solution is

x ⌘ 15 · 53 ⌘ 945 ⌘ 60 (mod 105).

The two solutions are therefore x ⌘ 25 (mod 105) and x ⌘ 60 (mod 105).
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