Name:
Problem 1: Consider the Chinese Remainder Theorem.
Can the Chinese Remainder Theorem be applied to determine if the system of linear congruences

$$
\begin{array}{ll}
x \equiv 3 & (\bmod 4) \\
x \equiv 5 & (\bmod 6) \\
x \equiv 1 & (\bmod 7)
\end{array}
$$

has a simultaneous solution?
To support your answer, either go through each hypothesis of the theorem and check that it is satisfied; or give (at least) one hypothesis of the theorem that is not satisfied.

Solution: The Chinese Remainder Theorem cannot be applied to determine if this system has a simultaneous solution. This is because here $n_{1}=4, n_{2}=6$ and $n_{3}=7$ and $\operatorname{gcd}\left(n_{1}, n_{2}\right)=\operatorname{gcd}(4,6)=2>1$. Therefore the hypothesis is not satisfied for all of the $n_{i} \mathrm{~S}$ and the theorem does not apply.

