Name:
Problem 1: Let $p$ be a prime. Prove that if $p$ divides $a^{n}$ for $a, n \in \mathbb{Z}$ and $n>0$, then $p^{n}$ divides $a^{n}$.

Solution: We apply Corollary 1 proved in class: If $p$ is a prime and $p$ divides a product of $n$ integers, then $p$ divides one of the integers in the product. Here the product of $n$ integers is

$$
a^{n}=a \cdot a \cdot a \ldots a,
$$

so we can say that $p \mid a^{n}$ implies $p \mid a$.
Now if $p \mid a$, this means that we can write $a=k p$ for $k \in \mathbb{Z}$. Therefore we have

$$
a^{n}=(k p)^{n}=k^{n} p^{n} .
$$

Since $k^{n} \in \mathbb{Z}$, it follows that $p^{n}$ divides $a^{n}$.

