Name:

Problem 1: Show that any integer of the form 6k + 5 for $k \in \mathbb{Z}$ is also of the form 3j + 2 for $j \in \mathbb{Z}$, but not conversely.

Solution: We first tackle the statement

$$n = 6k + 5, k \in \mathbb{Z} \implies n = 3j + 2, j \in \mathbb{Z}.$$

Suppose that n can be written in the form 6k + 5 for $k \in \mathbb{Z}$. Then

$$n = 6k + 5$$

= $3(2k) + (3 + 2)$
= $3(2k + 1) + 2$

Therefore n can be written in the form 3j + 2 with j = 2k + 1. However, the converse, by which we mean the statement

$$n = 3j + 2, j \in \mathbb{Z} \implies n = 6k + 5, k \in \mathbb{Z},$$

is not true. To show this it suffices to find one counter-example. Our work above suggests that choosing j even, say j=2, will do the trick. Indeed, n=8 can be written as

$$8 = 3 \cdot 2 + 2$$

but there is no $k \in \mathbb{Z}$ with

$$8 = 6k + 5$$
.