Name:
Problem 1: What is the order of 2 modulo 7?
For a maximum of 2 points, you may instead give the definition of the order of a modulo n, and explain how you could start trying to answer this question.

Solution:

If $n>1$ and $\operatorname{gcd}(a, n)=1$ (which is the case if $n=7$ and $a=2$), the order of a modulo n is the smallest positive integer k such that $a^{k} \equiv 1(\bmod n)$.

Therefore, we are looking for the smallest positive integer k such that $2^{k} \equiv 1$ $(\bmod 8)$. We can look for this number by successively computing $2(\bmod 7)$, then $2^{2}(\bmod 7)$, then $2^{3}(\bmod 7)$, etc. until we get 1 for the first time. The exponent will be the order of 2 modulo 7 .

We have that $2 \not \equiv 1(\bmod 7)$ and $2^{2}=4 \not \equiv 1(\bmod 7)$. However, $2^{3}=8 \equiv 1$ $(\bmod 7)$. Therefore the order of 2 modulo 7 is 3 .

