Name:

Problem 1: Please solve the following set of simultaneous linear congruences:

$$x \equiv 1 \pmod{3}$$

$$x \equiv 2 \pmod{5}$$

$$x \equiv 3 \pmod{7}.$$

Solution: This problem is already in the correct form where each equation looks like $x \equiv a_i \pmod{n_i}$ and all of the n_i s are pairwise relatively prime. Therefore we can say immediately that

$$a_1 = 1, \quad n_1 = 3, \quad \text{and} \quad N_1 = 35$$

 $a_2 = 2, \quad n_2 = 5 \quad \text{and} \quad N_2 = 21$
 $a_3 = 3, \quad n_3 = 7 \quad \text{and} \quad N_3 = 15.$

We just need to compute the x_i s and then we will be ready to put the solution together.

To compute x_1 , we must find an integer such that $x_1N_1 \equiv 1 \pmod{n_1}$, or, plugging in our values, $35x_1 \equiv 1 \pmod{3}$. Since $35 \equiv 2 \pmod{3}$, this is the same as solving $2x_1 \equiv 1 \pmod{3}$. By trying $x_1 = 0, 1, 2$ (which are the only distinct values that x_1 can take modulo 3) we see that $x_1 = 2$.

We now compute x_2 . We solve $x_2N_2 \equiv 1 \pmod{n_2}$ or $21x_2 \equiv 1 \pmod{5}$. Since $21 \equiv 1 \pmod{5}$, this is just $x_2 \equiv 1 \pmod{5}$, and we can take $x_2 = 1$.

Finally we find x_3 . The equation $x_3N_3 \equiv 1 \pmod{n_3}$ here is $15x_3 \equiv 1 \pmod{7}$. Since $15 \equiv 1 \pmod{7}$, the equation is just $x_3 \equiv 1 \pmod{7}$ and we can take $x_3 = 1$.

Now the solution of this simultaneous set of congruences is

$$x \equiv a_1 x_1 N_1 + a_2 x_2 N_2 + a_3 x_3 N_3 \pmod{n_1 n_2 n_3}$$

$$\equiv 1 \cdot 2 \cdot 35 + 2 \cdot 1 \cdot 21 + 3 \cdot 1 \cdot 15 \pmod{3 \cdot 5 \cdot 7}$$

$$\equiv 70 + 42 + 45 \pmod{105}$$

$$\equiv 157 \pmod{105}$$

$$\equiv 52 \pmod{105}.$$

We can quickly check our answer: Indeed $52 \equiv 1 \pmod{3}$, $52 \equiv 2 \pmod{5}$ and $52 \equiv 3 \pmod{7}$.